【題目】某市化工廠三個車間共有工人1000名,各車間男、女工人數(shù)如下表:已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的可能性是0.15.
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
(1)求x的值.
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,則應(yīng)在第三車間抽取多少名工人?
【答案】(1)150; (2)20名.
【解析】
(1)在抽樣過程中每個個體被抽到的概率是一樣的,抽到第二車間男工的概率是0.15,用x除以1000就得到0.15,算出x的值;
(2)先求出第三車間的總?cè)藬?shù),根據(jù)每個個體被抽到的概率,求出應(yīng)在第三車間抽取的人數(shù).
(1)由=0.15,得x=150.
(2)因?yàn)榈谝卉囬g的工人數(shù)是173+177=350,第二車間的工人數(shù)是100+150=250,
所以第三車間的工人數(shù)是1 000-350-250=400.
設(shè)應(yīng)從第三車間抽取m名工人,則由 ,得m=20.
所以應(yīng)在第三車間抽取20名工人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn), ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB丄平面BCD,M、N分別是AC、AD的中點(diǎn),BC 丄 CD.
(1)求證:MN//平面BCD;
(2)若AB=1,BC=,求直線AC與平面BCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“”,則:“”
B. 命題“若,則”的否命題是真命題
C. 若為假命題,則為假命題
D. 若是的充分不必要條件,則是的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn), 在圖中以表示.
(Ⅰ)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 求及乙組同學(xué)投籃命中次數(shù)的方差;
(Ⅱ)在(Ⅰ)的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A:“兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求的值及直線的直角坐標(biāo)方程;
(2)圓的極坐標(biāo)方程為,試判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時,有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)長軸長是10,離心率是;
(2)在x軸上的一個焦點(diǎn),與短軸兩個端點(diǎn)的連線互相垂直,且焦距為6.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com