【題目】為了全面貫徹黨的教育方針,堅持以人文本、德育為先,全面推進素質教育,讓學生接觸自然,了解社會,拓寬視野,豐富知識,提高社會實踐能力和綜合素質,減輕學生過重負擔,培養(yǎng)學生興趣愛好,豐富學生的課余生活,使廣大學生在社會實踐中,提高創(chuàng)新精神和實踐能力,樹立學生社會責任感,因此學校鼓勵學生利用課余時間參加社會活動實踐。寒假歸來,某校高三(2)班班主任收集了所有學生參加社會活動信息,整理出如圖所示的圖。

1)求高三(2)班同學人均參加社會活動的次數(shù);

2)求班上的小明同學僅參加1次社會活動的概率;

3)用分層抽樣的方法從班上參加活動2次及以上

的同學中抽取一個容量為5的樣本,從這5人中任選3人,其中僅有兩人參加2次活動的概率。.

【答案】(1);(2);(3)

【解析】試題分析

(1)結合統(tǒng)計圖和平均數(shù)的計算方法求解.(2)根據(jù)古典概型概率公式求解即可.(3)由分層抽樣的方法可得在參加2次活動的人中抽取3人,在參加3次和4次活動的人中個抽取1人,分別列出從5人中選3人的所有可能情況,根據(jù)古典概型概率公式求解即可

試題解析:

1由題意得,

高三(2)班同學人均參加社會活動的次數(shù)

2由題意得參加1次的有10人,班上40人,

所以所求概率為

3由分層抽樣的方法可得在參加2次活動的人中抽取3,分別記為;在參加3次和4次活動的人中個抽取1人,分別記為

則從5人中任選3人的所有可能結果為 ,10,

其中僅有兩人參加2次活動的情況有

,共有6

故所求概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某社會研究機構,為了研究大學生的閱讀習慣,隨機調查某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,其中男女各一半,男生中有表示會讀,女生中有表示不會讀.

(1)根據(jù)調查結果,得到如下2╳2列聯(lián)表:

總計

讀營養(yǎng)說明

不讀營養(yǎng)說明

總計

(2)根據(jù)以上列聯(lián)表,進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關系?

P(K2≥k)

0.10

0.025

0.010

0.005

k

2.706

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和,數(shù)列是正項等比數(shù)列,且.

1)求數(shù)列的通項公式;

2)記,是否存在正整數(shù),使得對一切,都有成立?若存在,求出M的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列中, , .

(1)求的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,準線為.已知點在拋物線上,點上, 是邊長為4的等邊三角形.

(1)求的值;

(2)在軸上是否存在一點,當過點的直線與拋物線交于、兩點時, 為定值?若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與直線y=x-2相切,設橢圓的上頂點為M, 是橢圓的左右焦點,且M為等腰直角三角形。(1)求橢圓的標準方程;(2)直線l過點N0,-)交橢圓于AB兩點,直線MAMB分別與橢圓的短軸為直徑的圓交于S,T兩點,求證:O、ST三點共線。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)-mx(mR)。(1)m>0,討論f(x)的單調性;(2)令g(x)=f(x-1)+(2m+1)x+n,g(x)有兩個零點,,求證: <

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)討論函數(shù)的單調區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機調查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如圖所示:

年齡

不支持“延遲退休年齡政策”的人數(shù)

(1)由頻率分布直方圖,估計這人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認為以歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

附:

參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案