【題目】已知函數(shù).

1)討論的單調性;

2)當時,設函數(shù),若對任意的恒成立,求的最小值.

【答案】1)單調遞減區(qū)間為,單調遞增區(qū)間為;(2的最小值為-3.

【解析】

1)由,可得,根據(jù)導數(shù)與單調性的關系,即判斷單調性;

2)由,因為對任意的恒成立,對任意的恒成立,構造函數(shù),可得,由,對進行分析,利用函數(shù)零點存在定理,可知一定存在唯一的,使得,進而求出的單調性,由此即可求出結果.

1)由題意,函數(shù),可得,

時,

時,

的單調遞減區(qū)間為,單調遞增區(qū)間為

2)由

因為對任意的恒成立,

對任意的恒成立,

,則

因為,所以.

又由函數(shù),可得,所以函數(shù)單調遞增,

因為,,

所以一定存在唯一的,使得,即,即,

所以上單調遞增,在上單調遞減,

所以.

因為,所以的最小值為-3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校數(shù)學建模小組為了研究雙層玻璃窗戶中每層玻璃厚度(每層玻璃的厚度相同)及兩層玻璃間夾空氣層厚度對保溫效果的影響,利用熱傳導定律得到熱傳導量滿足關系式,其中玻璃的熱傳導系數(shù)焦耳/(厘米·度),不流通、干燥空氣的熱傳導系數(shù)焦耳/(厘米·度),為室內外溫度差,值越小,保溫效果越好,現(xiàn)有4種型號的雙層玻璃窗戶,具體數(shù)據(jù)如下表:

型號

每層玻璃厚度(單位:厘米)

玻璃間夾空氣層厚度(單位:厘米)

0.4

3

0.3

4

0.5

3

0.4

4

則保溫效果最好的雙層玻璃的型號是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】202048日,武漢市雷神山醫(yī)院為確診新型冠狀病毒肺炎患者,需要檢測核酸是否為陽性,現(xiàn)有份核酸樣本,有以下兩種檢測方式:(1)逐份檢測,則需要檢測次;(2)混合檢測,將其中(,且)份核酸樣本分別取樣混合在一起檢測,若檢測結果為陰性,這份核酸樣本全為陰性,因而這份核酸樣本只要檢測一次就夠了,如果檢測結果為陽性,為了明確這份核酸樣本究竟哪幾份為陽性,就要對這份樣本再逐份檢測,此時這份核酸樣本的檢測次數(shù)總共為次.假設在接受檢測的核酸樣本中,每份樣本的檢測結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為.

1)假設有5份核酸樣本,其中只有2份樣本為陽性,若采用逐份檢測方式,求恰好經過4次檢測就能把陽性樣本全部檢測出來的概率.

2)現(xiàn)取其中(,且)份核酸樣本,記采用逐份檢測方式,樣本需要檢測的總次數(shù)為,采用混合檢測方式,樣本需要檢測的總次數(shù)為.

①試運用概率統(tǒng)計的知識,若,試求關于的函數(shù)關系式;

②若,用混合檢測方式可以使得樣本需要檢測的總次數(shù)的期望值比逐份檢測的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年底開始,非洲東部的肯尼亞等國家爆發(fā)出了一場嚴重的蝗蟲災情.目前,蝗蟲已抵達烏干達和坦桑尼亞,并向西亞和南亞等地區(qū)蔓延.蝗蟲危害大,主要危害禾本科植物,能對農作物造成嚴重傷害,每只蝗蟲的平均產卵數(shù)和平均溫度有關,現(xiàn)收集了以往某地的組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.

平均溫度

平均產卵數(shù)

表中.

1)根據(jù)散點圖判斷,(其中為自然對數(shù)的底數(shù))哪一個更適宜作為平均產卵數(shù)關于平均溫度的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數(shù)據(jù),求出關于的回歸方程.(結果精確到小數(shù)點后第三位)

2)根據(jù)以往統(tǒng)計,該地每年平均溫度達到以上時蝗蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達到以上的概率為.

①記該地今后年中,恰好需要次人工防治的概率為,求取得最大值時相應的概率;

②根據(jù)①中的結論,當取最大值時,記該地今后年中,需要人工防治的次數(shù)為,求的數(shù)學期望和方差.

附:對于一組數(shù)據(jù)、,其回歸直線的斜率和截距的最小二乘法估計分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,不正確的是(

A.中,若,則

B.在銳角中,不等式恒成立

C.中,若,,則必是等邊三角形

D.中,若,則必是等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新冠病毒疫情爆發(fā)期間,口罩成為了個人的必需品.已知某藥店有4種不同類型的口罩,,其中型口罩僅剩1只(其余3種庫存足夠).今甲、乙等5人先后在該藥店各購買了1只口罩,統(tǒng)計發(fā)現(xiàn)他們恰好購買了3種不同類型的口罩,則所有可能的購買方式共有(

A.330B.345C.360D.375

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為內角的對邊,若是銳角三角形,需要同時滿足下列四個條件中的三個:

1)條件①④能否同時滿足,請說明理由;

2)以上四個條件,請在滿足三角形有解的所有組合中任選一組,并求出對應的的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代十進制的算籌計數(shù)法,在數(shù)學史上是一個偉大的創(chuàng)造,算籌實際上是一根根同長短的小木棍.如圖,是利用算籌表示數(shù)19的一種方法.例如:3可表示為“”,26可表示為“=⊥”,現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用199個數(shù)字表示兩位數(shù)中,能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,底面為梯形,,.

1平面

2平面;

3是棱的中點,棱上存在一點,使.

正確命題的序號為______.

查看答案和解析>>

同步練習冊答案