【題目】設(shè)直線與直線交于P.

)當(dāng)直線P點,且與直線平行時,求直線的方程.

)當(dāng)直線P點,且原點O到直線的距離為1時,求直線的方程.

【答案】

【解析】

本試題主要是考查了兩條直線的位置關(guān)系的運用.點到直線的距離公式的綜合運用.

1)因為直線P點,且與直線平行時,則可以設(shè)出直線的方程,代入交點P得到結(jié)論.

2)根據(jù)當(dāng)直線P點,且原點O到直線的距離為1時結(jié)合點到直線的距離公式得到直線l的方程

解:設(shè)直線與直線交于P

)聯(lián)立方程解得交點坐標(biāo)P為(1,2

設(shè)直線的方程為,代入點P1,2)的坐標(biāo)求得C=-4,所以直線的方程為:

)當(dāng)直線的斜率不存在時,成立;

當(dāng)直線的斜率存在時,設(shè)為k,則直線的方程為:y-2=k(x-1),整理得kx-y+2-k=0,

則原點到直線的距離,解得,此時直線方程為:

綜上:直線的方程為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點的直線交拋物線于兩點,拋物線在處的切線交于.

(1)求證:

(2)設(shè),當(dāng)時,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, , 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;

(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將, , 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;

(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名射擊運動員分別對一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:

(1)2人都射中目標(biāo)的概率;

(2)2人中恰有1人射中目標(biāo)的概率;

(3)2人至少有1人射中目標(biāo)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦點分別為,點是橢圓上的點,面積的最大值是

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點,點是橢圓上的點,是坐標(biāo)原點,若判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an1an(c>0,n∈N*),

(Ⅰ)證明:an1an≥1;

(Ⅱ)若對任意n∈N*,都有,證明:()對于任意m∈N*,當(dāng)nm時,

(ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面,平面平面,是邊長為2的等邊三角形,,

1)證明:平面平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案