【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)求證: ;

(3),若對于任意的,恒有成立,求的取值范圍

【答案】1見解析 2.

【解析】試題分析:1)由題意,得,得出函數(shù)的單調(diào)性,即可求得函數(shù)的極值;

21)知的極小值即為最小值,推得,進(jìn)而可證得結(jié)論;

3由題意的解析式,求得,,求得,利用得存在,使,且上遞減, 上遞增,求得函數(shù)的的最小值,再轉(zhuǎn)化為函數(shù),利用導(dǎo)數(shù)的單調(diào)性,即可求解實(shí)數(shù)的取值范圍.

試題解析:

1)由可得,函數(shù)單減,在單增,所以函數(shù)的極值在取得,為極小值;

2)根據(jù)(1)知的極小值即為最小值,即可推得當(dāng)且僅當(dāng)取等,所以,

所以有

3

,則,∴上遞增

,當(dāng)時, ∴存在,使,且上遞減, 上遞增

,即

∵對于任意的,恒有成立

,又,

,令, ,顯然單增,而,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.

1)求的值;

2)從“線上買菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎品,求這位“線上買菜”消費(fèi)總金額均低于元的概率;

3)若地區(qū)有萬居民,該平臺為了促進(jìn)消費(fèi),擬對消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計該平臺在地區(qū)擬投放的電子補(bǔ)貼總金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三角形內(nèi),我們將三條邊的中線的交點(diǎn)稱為三角形的重心,且重心到任一頂點(diǎn)的距離是到對邊中點(diǎn)距離的兩倍類比上述結(jié)論:在三棱錐中,我們將頂點(diǎn)與對面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點(diǎn)稱為它的“重心”,則棱錐重心到頂點(diǎn)的距離是到對面重心距離的______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件解三角形,有兩解的有(

A.已知a,b2,B45°B.已知a2,b,A45°

C.已知b3c,C60°D.已知a2c4,A45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題為假命題的是(  )

A. “若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆命題

B. “面積相等的三角形全等”的否命題

C. “若xy=1,則x,y互為倒數(shù)”的逆命題

D. “若A∪B=B,則AB”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)曲線的一個焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上任意一點(diǎn),過點(diǎn)軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)求證:直線過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

【答案】I;(II證明見解析.

【解析】試題分析:(Ⅰ)將曲線化為標(biāo)準(zhǔn)方程,可求得的焦點(diǎn)坐標(biāo)分別為,可得,所以,即拋物線的方程為;(Ⅱ)結(jié)合(Ⅰ),可設(shè),得,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得,直線的方程為,整理得的方程為,此時直線恒過定點(diǎn).

試題解析:由曲線,化為標(biāo)準(zhǔn)方程可得, 所以曲線是焦點(diǎn)在軸上的雙曲線,其中,故的焦點(diǎn)坐標(biāo)分別為,因?yàn)閽佄锞的焦點(diǎn)坐標(biāo)為,由題意知,所以,即拋物線的方程為.

)由()知拋物線的準(zhǔn)線方程為,設(shè),顯然.故,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得

當(dāng),即時,直線的方程為,

當(dāng),即時,直線的方程為,整理得的方程為,此時直線恒過定點(diǎn), 也在直線的方程為上,故直線的方程恒過定點(diǎn).

型】解答
結(jié)束】
21

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;

(Ⅱ)若時,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若數(shù)列滿足, ,記的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面六邊形中,四邊形是矩形,且, ,點(diǎn), 分別是 的中點(diǎn),分別沿直線 , 翻折成如圖(2)的空間幾何體

Ⅰ)利用下列結(jié)論1或結(jié)論2,證明: 、四點(diǎn)共面;

結(jié)論1:過空間一點(diǎn)作已知直線的垂面,有且僅有一個.

結(jié)論2:過平面內(nèi)一條直線作該平面的垂面,有且僅有一個.

Ⅱ)若二面角和二面角都是,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖4所示,其中成績分組區(qū)間是: ,,.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求數(shù)學(xué)成績在之外的人數(shù).

分?jǐn)?shù)段

X:y

1:1

2:1

3:4

4:5

查看答案和解析>>

同步練習(xí)冊答案