【題目】為研究某種圖書每冊的成本費(fèi)(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中,

(1)根據(jù)散點(diǎn)圖判斷: 哪一個更適宜作為每冊成本費(fèi)(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應(yīng)該印刷多少冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為,

【答案】(1)見解析;(2).(3)10千冊.

【解析】試題分析:(1)根據(jù)散點(diǎn)圖可以選擇方程的類型;(2)根據(jù)公式得到, ,進(jìn)而得到回歸方程;(3)依題意: ,解出不等式解集即可。

解析:

(1)由散點(diǎn)圖判斷, 適宜作為每冊成本費(fèi)與印刷冊數(shù)的回歸方程.

(2)令,先建立關(guān)于的線性回歸方程,

由于

,

關(guān)于的線性回歸方程為

從而關(guān)于的回歸方程為

(3)假設(shè)印刷千冊,依題意, ,

,

∴至少印刷10千冊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆四川省綿陽南山中學(xué)高三二診】已知橢圓的焦距為,且經(jīng)過點(diǎn).過點(diǎn)的斜率為的直線與橢圓交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn),直線軸于點(diǎn).

1)求的取值范圍;

2)試問: 是否為定值?若是,求出定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若曲線的一條切線經(jīng)過點(diǎn),求這條切線的方程.

(2)若關(guān)于的方程有兩個不相等的實數(shù)根x1,x2。

求實數(shù)a的取值范圍;

證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量高于4000億元的省份共有3個;

②與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長;

③去年同期的總量前三位依次是省、省、;

④2016年同期省的總量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動到橢圓的上頂點(diǎn)時,直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線兩點(diǎn).問以為直徑的圓是否過定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中生調(diào)查了當(dāng)?shù)啬承^(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:

1)在直方圖的經(jīng)濟(jì)損失分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個值,并以經(jīng)濟(jì)損失落入該區(qū)間的頻率作為經(jīng)濟(jì)損失取該區(qū)間中點(diǎn)值的概率(例如:經(jīng)濟(jì)損失則取,且的概率等于經(jīng)濟(jì)損失落入的頻率),F(xiàn)從當(dāng)?shù)氐木用裰须S機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出的2戶的經(jīng)濟(jì)損失的和為,求的分布列和數(shù)學(xué)期望.

2)臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

經(jīng)濟(jì)損失不超過4000元

經(jīng)濟(jì)損失超過4000元

合計

捐款超過500元

30

捐款不超過500元

6

合計

附:臨界值表參考公式:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形, MPD的中點(diǎn),PA⊥平面ABCD,PA=AD= 4, AB = 2.

(1)求證:AM⊥平面MCD;

(2)求直線PC與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中, 分別為的中點(diǎn), 上一個動點(diǎn),且.

(1)當(dāng)時,求證:平面平面

(2)是否存在,使得?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案