【題目】已知函數(shù),其中

1)判斷函數(shù)的奇偶性,并說明理由;

2)證明:當(dāng)時,函數(shù)上為減函數(shù);

3)求函數(shù)的值域

【答案】1為偶函數(shù);(2)證明見解析;

3)當(dāng)時,值域為;當(dāng)時,值域為.

【解析】試題分析:1)先判斷定義域是否關(guān)于原點對稱,再驗證還是;(2)按照單調(diào)性的定義進行證明即可;(3)令,由條件可得,

然后分兩種情況求函數(shù)的值域。

試題解析

1)要使函數(shù)有意義,需滿足,

解得

函數(shù)的定義域為,

函數(shù)為偶函數(shù)。

2由題意得,

設(shè),,則

, ,

,

函數(shù)上為減函數(shù).

3)令,則。

,

當(dāng)時, ,故函數(shù)的值域為,

當(dāng)時, ,故函數(shù)的值域為

綜上可得當(dāng)時,函數(shù)的值域為;當(dāng)時,函數(shù)的值域為。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋中有7個大小、形狀相同的小球,6個白球1個紅球.現(xiàn)任取1個,若為紅球就停止,若為白球就放回,攪拌均勻后再接著。囋O(shè)計一個模擬試驗,計算恰好第三次摸到紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆安徽百校論壇高三文上學(xué)期聯(lián)考二】已知函數(shù).

(1)若恒成立,求實數(shù)的取值范圍;

(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點處的切線為直線

(Ⅰ)求直線的直角坐標(biāo)方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

在平面直角坐標(biāo)系中,有三個點的坐標(biāo)分別是.

1)證明:A,B,C三點不共線;

(2)求過A,B的中點且與直線平行的直線方程;

(3)設(shè)過C且與AB所在直線垂直的直線,求與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a、b是方程2lg2 xlg x410的兩個實根,求lg(ab 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為集合A,B{x|x<a}

(1)求集合A

(2)AB,a的取值范圍;

(3)若全集U{x|x4},a=-1,U AA(U B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營一批進價為/臺的小商品,經(jīng)調(diào)查得知如下數(shù)據(jù).若銷售價上下調(diào)整,銷售量和利潤大體如下:

銷售價(/臺)

日銷售量(

日銷售額

日銷售利潤(

1)在下面給出的直角坐標(biāo)系中,根據(jù)表中的數(shù)據(jù)描出實數(shù)對的對應(yīng)點,并寫出的一個函數(shù)關(guān)系式;

2)請把表中的空格里的數(shù)據(jù)填上;

3)根據(jù)表中的數(shù)據(jù)求的函數(shù)關(guān)系式,并指出當(dāng)銷售單價為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.

(1)求角B的大小;

(2)若b=,求a+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案