【題目】某班倡議假期每位學(xué)生至少閱讀一本名著,為了解學(xué)生的閱讀情況,對該班所有學(xué)生進(jìn)行了調(diào)查.調(diào)查結(jié)果如下表:
閱讀名著的本數(shù) | 1 | 2 | 3 | 4 | 5 |
男生人數(shù) | 3 | 1 | 2 | 1 | 3 |
女生人數(shù) | 1 | 3 | 3 | 1 | 2 |
(1)試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);
(2)若從閱讀本名著的學(xué)生中任選
人交流讀書心得,求選到男生和女生各
人的概率;
(3)試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差
的大小(只需寫出結(jié)論).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
為大于零的常數(shù).
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間
上的最小值;
(3)求證:對于任意的時,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)
的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)直線過
且與曲線
相切,求直線
的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)
關(guān)于
軸對稱,求曲線
上的點(diǎn)到點(diǎn)
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F并且經(jīng)過點(diǎn)A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OMN的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于
兩點(diǎn)的直線
,使得
成立?若存在,求出實(shí)數(shù)
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?
(3)通過該統(tǒng)計(jì)圖,可以估計(jì)該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有20名學(xué)生參加某次考試,成績(單位:分)的頻率分布直方圖如圖所示:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績落在中的學(xué)生人數(shù);
(Ⅲ)從成績在的學(xué)生中任選2人,求所選學(xué)生的成績都落在
中的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中裝有5個形狀大小完全相同的球,其中有2個紅球,3個白球.
(1)從袋中隨機(jī)取兩個球,求取出的兩個球顏色不同的概率;
(2)從袋中隨機(jī)取一個球,將球放回袋中,然后再從袋中隨機(jī)取一個球,求兩次取出的球中至少有一個紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
內(nèi)有一點(diǎn)
,過點(diǎn)
作直線
交圓
于
、
兩點(diǎn).
(1)當(dāng)經(jīng)過圓心
時,求直線
的方程;
(2)當(dāng)弦被點(diǎn)
平分時,寫出直線
的方程;
(3)當(dāng)直線的傾斜角為
時,求弦
的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com