【題目】某苗木基地常年供應(yīng)多種規(guī)格的優(yōu)質(zhì)樹(shù)苗.為更好地銷售樹(shù)苗,建設(shè)生態(tài)文明家鄉(xiāng)和美好家園,基地積極主動(dòng)地聯(lián)系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購(gòu)買合同的概率分別,且基地是否得到三家公司的購(gòu)買合同是相互獨(dú)立的.

1)若公司甲計(jì)劃與基地簽訂300棵銀杏實(shí)生苗的銷售合同,每棵銀杏實(shí)生苗的價(jià)格為90元,栽種后,每棵樹(shù)苗當(dāng)年的成活率都為0.9,對(duì)當(dāng)年沒(méi)有成活的樹(shù)苗,第二年需再補(bǔ)種1.現(xiàn)公司甲為苗木基地提供了兩種售后方案,

方案一:公司甲購(gòu)買300棵銀杏樹(shù)苗后,基地需提供一年一次,共計(jì)兩年的補(bǔ)種服務(wù),且每次補(bǔ)種人工及運(yùn)輸費(fèi)用平均為800元;

方案二:公司甲購(gòu)買300棵銀杏樹(shù)苗后,基地一次性地多給公司甲60棵樹(shù)苗,后期的移栽培育工作由公司甲自行負(fù)責(zé).

若基地首次運(yùn)送方案一的300棵樹(shù)苗及方案二的360棵樹(shù)苗的運(yùn)費(fèi)及栽種費(fèi)用合計(jì)都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?

2)記為該基地得到三家公司購(gòu)買合同的個(gè)數(shù),若,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【答案】(1)方案一:26770元;方案二:25400元;(2)分布列見(jiàn)解析;

【解析】

(1)用購(gòu)買銀杏樹(shù)苗的收入減去人工費(fèi)用和運(yùn)輸費(fèi)用;

(2)先利用求出的值,再根據(jù)題意分別求出,再列出分布列并求出數(shù)學(xué)期望.

(1)方案一、每棵銀杏實(shí)生苗的價(jià)格為90元,栽種后,

且每棵樹(shù)苗當(dāng)年的成活率都為0.9,基地需提供一年一次,

共計(jì)兩年的補(bǔ)種服務(wù),且每次補(bǔ)種人工及運(yùn)輸費(fèi)用平均為800元,

則苗木基地的合同收益為:

(元);

方案二、公司甲購(gòu)買300棵銀杏樹(shù)苗后,基地一次性地多給公司甲60棵樹(shù)苗,

后期的移栽培育工作由公司甲自行負(fù)責(zé),

則苗木基地的合同收益為:(元)

(2)記為該基地得到三家公司購(gòu)買合同的個(gè)數(shù),

且公司甲、乙、丙的購(gòu)買合同的概率分別、、,

所以

解得:

可取值為012、3,則

,

,

則隨機(jī)變量的分布列為

0

1

2

3

數(shù)學(xué)期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)為其左頂點(diǎn),點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作直線與橢圓交于兩點(diǎn),當(dāng)垂直于軸時(shí),.

1)求該橢圓的方程;

2)設(shè)直線,分別交直線于點(diǎn),,線段的中點(diǎn)為,設(shè)直線的斜率分別為,,且,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求在點(diǎn)處的切線方程;

2)當(dāng)時(shí),證明:;

3)判斷曲線是否存在公切線,若存在,說(shuō)明有幾條,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為直角梯形,平面,且,,.

1)求證:平面平面;

2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上的最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,,設(shè),.

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)若,,求實(shí)數(shù)的最小值;

(Ⅲ)當(dāng)時(shí),給出一個(gè)新數(shù)列,其中,設(shè)這個(gè)新數(shù)列的前項(xiàng)和為,若可以寫(xiě)成,)的形式,則稱為“指數(shù)型和”.問(wèn)中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,將曲線繞極點(diǎn)順時(shí)針旋轉(zhuǎn)后得到曲線的曲線記為.

1)求曲線的極坐標(biāo)方程;

2)設(shè)的交點(diǎn)為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代著名數(shù)學(xué)家劉徽的杰作《九章算術(shù)注》是中國(guó)最寶貴的數(shù)學(xué)遺產(chǎn)之一,書(shū)中記載了他計(jì)算圓周率所用的方法.先作一個(gè)半徑為1的單位圓,然后做其內(nèi)接正六邊形,在此基礎(chǔ)上做出內(nèi)接正邊形,這樣正多邊形的邊逐漸逼近圓周,從而得到圓周率,這種方法稱為“劉徽割圓術(shù)”.現(xiàn)設(shè)單位圓的內(nèi)接正邊形的一邊為,點(diǎn)為劣弧的中點(diǎn),則是內(nèi)接正邊形的一邊,現(xiàn)記,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為進(jìn)一步規(guī)范校園管理,強(qiáng)化飲食安全,提出了遠(yuǎn)離外賣,健康飲食的口號(hào).當(dāng)然,也需要學(xué)校食堂能提供安全豐富的菜品來(lái)滿足同學(xué)們的需求.在學(xué)期末,校學(xué)生會(huì)為了調(diào)研學(xué)生對(duì)本校食堂A部和B部的用餐滿意度,從在A部和B部都用過(guò)餐的學(xué)生中隨機(jī)抽取了200人,每人分別對(duì)其評(píng)分,滿分為100分.隨后整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)分成6組:第1,第2,第3,第4,第5,第6,得到A部分?jǐn)?shù)的頻率分布直方圖和B部分?jǐn)?shù)的頻數(shù)分布表.

分?jǐn)?shù)區(qū)間

頻數(shù)

7

18

21

24

70

60

定義:學(xué)生對(duì)食堂的滿意度指數(shù)

分?jǐn)?shù)

滿意度指數(shù)

0

1

2

3

4

5

1)求A部得分的中位數(shù)(精確到小數(shù)點(diǎn)后一位);

2A部為進(jìn)一步改善經(jīng)營(yíng),從打分在80分以下的前四組中,采用分層抽樣的方法抽取8人進(jìn)行座談,再?gòu)倪@8人中隨機(jī)抽取3人參與端午節(jié)包粽子實(shí)踐活動(dòng),在第3組抽到1人的情況下,第4組抽到2人的概率;

3)如果根據(jù)調(diào)研結(jié)果評(píng)選學(xué)生放心餐廳,應(yīng)該評(píng)選A部還是B部(將頻率視為概率)

查看答案和解析>>

同步練習(xí)冊(cè)答案