【題目】在平面直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,將曲線繞極點順時針旋轉(zhuǎn)后得到曲線的曲線記為.

1)求曲線的極坐標方程;

2)設(shè)的交點為,,求的長度.

【答案】12

【解析】

1)利用求得的普通方程,然后根據(jù)極坐標和直角坐標的轉(zhuǎn)換公式,求得曲線的極坐標方程.代入曲線的極坐標方程,求得的極坐標方程.

2)由(1)求得的普通方程,由此求得相交弦所在直線方程,根據(jù)點到直線的距離公式以及勾股定理,求得.

1)曲線的參數(shù)方程為為參數(shù)),即

平方相加得的普通方程為:(或.

,得曲線的極坐標方程為

任取上一點極坐標為,由題意有在曲線上,

代入有極坐標方程為.

2)由(1)知的極坐標方程為,即,

所以的普通方程為:,

聯(lián)立方程可得直線的方程為:的圓心為,半徑為2,且圓心到直線的距離為1,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)求在點處的切線;

2)研究函數(shù)的單調(diào)性,并求出極值;

3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,,分別為,的中點.

1)證明:平面

2)證明:平面平面;

3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某苗木基地常年供應(yīng)多種規(guī)格的優(yōu)質(zhì)樹苗.為更好地銷售樹苗,建設(shè)生態(tài)文明家鄉(xiāng)和美好家園,基地積極主動地聯(lián)系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購買合同的概率分別、,且基地是否得到三家公司的購買合同是相互獨立的.

1)若公司甲計劃與基地簽訂300棵銀杏實生苗的銷售合同,每棵銀杏實生苗的價格為90元,栽種后,每棵樹苗當年的成活率都為0.9,對當年沒有成活的樹苗,第二年需再補種1.現(xiàn)公司甲為苗木基地提供了兩種售后方案,

方案一:公司甲購買300棵銀杏樹苗后,基地需提供一年一次,共計兩年的補種服務(wù),且每次補種人工及運輸費用平均為800元;

方案二:公司甲購買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,后期的移栽培育工作由公司甲自行負責.

若基地首次運送方案一的300棵樹苗及方案二的360棵樹苗的運費及栽種費用合計都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?

2)記為該基地得到三家公司購買合同的個數(shù),若,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,它的體積是底面△ABC中,∠BAC=90°,AB=4,AC=3在底面的射影是D,且DBC的中點.

(1)求側(cè)棱與底面ABC所成角的大。

(2)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是邊長為2的正方形,平面,且

(Ⅰ)求證:平面平面

(Ⅱ)線段上是否存在一點,使二而角等于45°?若存在,請找出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)若的極大值點,求的取值范圍;

(2)當,時,方程(其中)有唯一實數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知).

(Ⅰ)判斷當的單調(diào)性;

(Ⅱ)若,)為兩個極值點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,若上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案