【題目】如圖,平面分別是上的動(dòng)點(diǎn),且.

1)若平面與平面的交線為,求證:;

2)當(dāng)平面平面時(shí),求平面平面所成的二面角的余弦值.

【答案】1)見(jiàn)解析;(2

【解析】

1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;

2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;

解:(1)由

平面,平面,所以平面.

平面,且平面平面,

.

2)因?yàn)?/span>平面,所以,又,所以平面

所以,又,所以.

若平面平面,則平面,所以,

,所以.

以點(diǎn)為坐標(biāo)原點(diǎn),所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,

,,設(shè)

,可得,,即,所以可得,所以,

設(shè)平面的一個(gè)法向量為,則

,,,取,得

所以

易知平面的法向量為,

設(shè)平面與平面所成的二面角為,

,

結(jié)合圖形可知平面與平面所成的二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對(duì)數(shù)的底數(shù))

(1)求的值;

(2)若,且對(duì)任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬(wàn)公里,其中高鐵營(yíng)業(yè)里程2.9萬(wàn)公里,超過(guò)世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬(wàn)公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著

B.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)

C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上

D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)XN(12),其正態(tài)分布密度曲線如圖所示,P(X≥3)=0.0228,那么向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為(  )

(附:隨機(jī)變量ξ服從正態(tài)分布N(μσ2),則P(μσξμσ)=68.26%,P(μ-2σξμ+2σ)=95.44%)

A. 6038 B. 6587 C. 7028 D. 7539

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線.

1)求曲線的標(biāo)準(zhǔn)方程;

2)已知過(guò)坐標(biāo)原點(diǎn)的直線交曲線、兩點(diǎn),若在曲線上存在點(diǎn),使得,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線與軸平行,求;

2)已知上的最大值不小于,求的取值范圍;

3)寫(xiě)出所有可能的零點(diǎn)個(gè)數(shù)及相應(yīng)的的取值范圍.(請(qǐng)直接寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處取得極值,求實(shí)數(shù)的值.

(Ⅱ)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案