【題目】在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.
【答案】(1);(2).
【解析】
(1)在已知極坐標(biāo)方程兩邊同時(shí)乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲線C的直角坐標(biāo)方程;
(2)聯(lián)立直線l的參數(shù)方程與x2=4y由韋達(dá)定理以及參數(shù)的幾何意義和弦長(zhǎng)公式可得弦長(zhǎng)與已知弦長(zhǎng)相等可解得.
解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時(shí)乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,
∴x2+y2+x2﹣y2=8y,即x2=4y,
所以曲線C的直角坐標(biāo)方程為:x2=4y.
(2)聯(lián)立直線l的參數(shù)方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,
設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,
由△=16sin2α﹣16cos2α>0,得sinα>,
t1+t2=,由|PM|=,
所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),
所以sinα=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A地的天氣預(yù)報(bào)顯示,A地在今后的三天中,每一天有強(qiáng)濃霧的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)這三天中至少有兩天有強(qiáng)濃霧的概率,先利用計(jì)算器產(chǎn)生之間整數(shù)值的隨機(jī)數(shù),并用0,1,2,3,4,5,6表示沒(méi)有強(qiáng)濃霧,用7,8,9表示有強(qiáng)濃霧,再以每3個(gè)隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù):
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
則這三天中至少有兩天有強(qiáng)濃霧的概率近似為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.
1求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);
2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;
3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對(duì)稱,則函數(shù)的圖象( 。
A. 關(guān)于直線對(duì)稱B. 關(guān)于直線對(duì)稱
C. 關(guān)于點(diǎn)對(duì)稱D. 關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,點(diǎn),
中恰有三點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓上的動(dòng)點(diǎn),由原點(diǎn)向圓引兩條切線,分別交橢圓于點(diǎn),若直線的斜率存在,并記為,試問(wèn)的面積是否為定值?若是,求出該值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為4,E、F分別是棱AB、的中點(diǎn),聯(lián)結(jié)EF、、、E、E、E.
求三棱錐的體積;
求直線與平面所成角的大小結(jié)果用反三角函數(shù)值表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車(chē)間做A,B型兩類(lèi)桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A,B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A,B型桌子分別需要3小時(shí)和1小時(shí);又知木工和漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),設(shè)該廠每天做A,B型桌子分別為x張和y張.
(1)試列出x,y滿足的關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)若工廠做一張A,B型桌子分別獲得利潤(rùn)為2千元和3千元,那么怎樣安排A,B型桌子生產(chǎn)的張數(shù),可使得所得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè),若關(guān)于的不等式在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
Ⅰ當(dāng)時(shí),求函數(shù)的最小值;
Ⅱ若對(duì)任意,恒有成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com