球的表面積與它的內(nèi)接正方體的表面積之比是(   )
A.B.C.D.
B

試題分析:因為球的直徑2R就是球的內(nèi)接正方體的體對角線的長.即.所以球的表面積為.因為內(nèi)接正方體的表面積為.所以球的表面積與它的內(nèi)接正方體的表面積之比是.故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.

(1)求證:;
(2)在棱上確定一點,使、、四點共面,并求此時的長;
(3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,儲油灌的表面積為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.

⑴試用半徑表示出儲油灌的容積,并寫出的范圍.
⑵當圓柱高與半徑的比為多少時,儲油灌的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點.

(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH//平面AEF;
(Ⅲ)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱錐S­ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此三棱錐的體積為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知一圓柱內(nèi)接于球O,且圓柱的底面直徑與母線長均為2,則球O的表面積為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知一個正三棱錐的三條側(cè)棱兩兩垂直且相等,底面邊長為,則該三棱錐的外接球的表面積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱錐,側(cè)棱兩兩互相垂直,且,則以為球心且1為半徑的球與三棱錐重疊部分的體積是               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若兩個球的表面積之比為,則這兩個球的體積之比為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案