【題目】如圖,在幾何體中,底面為矩形, , .點(diǎn)在棱上,平面與棱交于點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求證:平面平面;
(Ⅲ)若, , ,平面平面,求二面角的大。
【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3)
【解析】試題分析:(Ⅰ)由線面平行判定定理得平面,由線面平行性質(zhì)定理得;(Ⅱ)通過(guò)線面垂直平面,得面面垂直;(Ⅲ)先證, , 兩兩互相垂直,建立空間直角坐標(biāo)系,求出面的法向量為,結(jié)合面的法向量為,求出法向量夾角即可.
試題解析:(Ⅰ)因?yàn)?/span>為矩形,所以,所以平面.
又因?yàn)槠矫?/span>平面,所以.
(Ⅱ)因?yàn)?/span>為矩形,所以.因?yàn)?/span>,所以平面.
所以平面平面.
(Ⅲ)因?yàn)?/span>, ,所以平面,所以.
由(Ⅱ)得平面,所以,所以, , 兩兩互相垂直.建立空間直角坐標(biāo)系.
不妨設(shè),則,設(shè).
由題意得, , , , , , .
所以, ,設(shè)平面的法向量為,則即令,則,所以.
又平面的法向量為,所以.
因?yàn)槎娼?/span>的平面角是銳角,所以二面角的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α∈,且sin +cos = .
(1)求cos α的值;
(2)若sin(α-β)=- ,β∈,求cos β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家為了鼓勵(lì)節(jié)約用水,實(shí)行階梯用水收費(fèi)制度,價(jià)格參照表如表:
用水量(噸) | 單價(jià)(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過(guò)20噸不超過(guò)35噸的部分按3元/噸收費(fèi) |
35以上 | 4 | 超過(guò)35噸的部分按4元/噸收費(fèi) |
(1)若小明家10月份用水量為30噸,則應(yīng)繳多少水費(fèi)?
(2)若小明家10月份繳水費(fèi)99元,則小明家10月份用水多少噸?
(3)寫出水費(fèi)y與用水量x之間的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=-n2+n,求數(shù)列{|an|}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩個(gè)容器,甲容器容量為,裝滿純酒精,乙容器容量為,其中裝有體積為的水(:?jiǎn)挝唬?/span> ).現(xiàn)將甲容器中的液體倒人乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒人甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設(shè)操作過(guò)程中溶液體積變化忽略不計(jì).設(shè)經(jīng)過(guò)次操作之后,乙容器中含有純酒精(單位: ),下列關(guān)于數(shù)列的說(shuō)法正確的是( )
A. 當(dāng)時(shí),數(shù)列有最大值
B. 設(shè),則數(shù)列為遞減數(shù)列
C. 對(duì)任意的,始終有
D. 對(duì)任意的,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長(zhǎng)為,頂點(diǎn)在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,且.設(shè)函數(shù)在區(qū)間內(nèi)單調(diào)遞減; 曲線與軸交于不同的兩點(diǎn),如果“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com