【題目】已知函數(shù)fx)=|x1|+|2x+2|gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)對x1R,x2R,使得fx1)≥gx2)成立,求a的取值范圍.

【答案】12[40]

【解析】

1)根據(jù)絕對值的幾何意義,去掉絕對值,再分類解不等式fx)>4.

2)根據(jù)對x1R,x2R,使得fx1gx2)成立,則fxmingxmin,由(1)知, fxmin2,gx)=|x+2|+|x2a|+a≥|x+2)﹣(x2a|+a|2a+2|+a,解不等式2≥|2a+2|+a即可.

1)因?yàn)?/span>,

所以fx)>4即為,

解得x1,

所以不等式的解集為

2)由(1)知,當(dāng)x=﹣1時(shí),fxmin2,gx)=|x+2|+|x2a|+a≥|x+2)﹣(x2a|+a|2a+2|+a,

由題意,對x1R,x2R,使得fx1gx2)成立,

fxmingxmin

2≥|2a+2|+a,

所以

解得﹣4≤a≤0,

所以實(shí)數(shù)a的取值范圍為[40].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱臺中,底面是菱形,底面,且,是棱的中點(diǎn).

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中有4個(gè)白球,2個(gè)黑球,每次從袋中取出一個(gè)球.

1)若有放回的取2次球,求第二次取出的是黑球的概率;

2)若不放回的取2次球,求在第一次取出白球的條件下,第二次取出的是黑球的概率;

3)若有放回的取3次球,求取出黑球次數(shù)的分布列及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,分別是線段,的中點(diǎn),底面是正三角形,延長到點(diǎn),使得.

1為線段上確定一點(diǎn),當(dāng)平面時(shí),求的值;

2)當(dāng)平面,且時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,點(diǎn)在面內(nèi)的射影為,,點(diǎn)到平面的距離為,且直線垂直.

(Ⅰ)在棱上找一點(diǎn),使直線與平面平行,并說明理由;

(Ⅱ)在(Ⅰ)的條件下,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F為橢圓ab0)的一個(gè)焦點(diǎn),點(diǎn)A為橢圓的右頂點(diǎn),點(diǎn)B為橢圓的下頂點(diǎn),橢圓上任意一點(diǎn)到點(diǎn)F距離的最大值為3,最小值為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若MN在橢圓上但不在坐標(biāo)軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1k2,求證:k1k2e21e為橢圓的離心率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C是球O球面上的三點(diǎn),ACBC6,AB,且四面體OABC的體積為24.則球O的表面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;

2)若直線lykx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ||PQ|,點(diǎn)M的直角坐標(biāo)為(1,0),求△PMQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是,上頂點(diǎn)坐標(biāo)為.

1)求橢圓的方程;

2)問是否存在斜率為1的直線與橢圓交于兩點(diǎn),為橢圓的右焦點(diǎn),的重心分別為,且以線段直徑的圓過原點(diǎn),若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案