【題目】已知A,BC是球O球面上的三點(diǎn),ACBC6AB,且四面體OABC的體積為24.則球O的表面積為_____

【答案】136π

【解析】

求出底面三角形的面積,利用三棱錐的體積求出O到底面的距離,求出底面三角形的所在平面圓的半徑,通過勾股定理求出球的半徑,即可求解球的表面積.

三棱錐OABC,A、BC三點(diǎn)均在球心O的表面上,且ACBC6AB6

AB2AC2+BC2

∴△ABC外接圓的半徑為:rAB3,

ABC的外接圓的圓心為G,則OGG

SABCACCB18,三棱錐OABC的體積為24

SABCOG24,即18OG24

OG4,

球的半徑為:R

球的表面積:4π×R2136π

故答案為:136π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析.

1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;

2)求抽取的6所學(xué)校中的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為的面積為2.

(I)求橢圓C的方程;

(II)設(shè)M是橢圓C上一點(diǎn),且不與頂點(diǎn)重合,若直線與直線交于點(diǎn)P,直線與直線交于點(diǎn)Q.求證:BPQ為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x1|+|2x+2|,gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)對(duì)x1R,x2R,使得fx1)≥gx2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線C2的直角坐標(biāo)方程為.

1)若直線l與曲線C1交于M、N兩點(diǎn),求線段MN的長(zhǎng)度;

2)若直線lx軸,y軸分別交于A、B兩點(diǎn),點(diǎn)P在曲線C2上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:ab0)過點(diǎn)E1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1,F2,其中F1,0).

1)求橢圓C的方程:

2)設(shè)Mx0,y0)為橢圓C上異于AB兩點(diǎn)的任意一點(diǎn),MNAB于點(diǎn)N,直線lx0x+2y0y40,設(shè)過點(diǎn)Ax軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過線段MN的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=log3ax+b)的圖象經(jīng)過點(diǎn)A2,1)和B5,2),anan+bnN*).

1)求{an};

2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,bn,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為迎接“618年中慶典,擬推出促銷活動(dòng),活動(dòng)規(guī)則如下:①活動(dòng)期間凡在商場(chǎng)內(nèi)購(gòu)物,每滿673元可參與一次現(xiàn)金紅包抽獎(jiǎng),且互不影響,詳細(xì)如下表:

獎(jiǎng)項(xiàng)

一等獎(jiǎng)

二等獎(jiǎng)

獎(jiǎng)金

200元現(xiàn)金紅包

優(yōu)惠餐券1張(價(jià)值50元)

獲獎(jiǎng)率

30%

70%

②活動(dòng)期間凡在商場(chǎng)內(nèi)購(gòu)物,每滿2019元可參與消費(fèi)返現(xiàn),返現(xiàn)金額為實(shí)際消費(fèi)金額的15%.規(guī)定每位顧客只可選擇參加其中一種優(yōu)惠活動(dòng).

1)現(xiàn)有顧客甲在商場(chǎng)消費(fèi)2019元,若其選擇參與抽獎(jiǎng),求其可以獲得現(xiàn)金紅包的概率.

2)現(xiàn)有100名消費(fèi)金額為2019元的顧客正在等待抽獎(jiǎng),假如你是該商場(chǎng)的活動(dòng)策劃人,你更希望顧客參與哪項(xiàng)優(yōu)惠活動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】呼和浩特市地鐵一號(hào)線于20191229日開始正式運(yùn)營(yíng)有關(guān)部門通過價(jià)格聽證會(huì),擬定地鐵票價(jià)后又進(jìn)行了一次調(diào)查.調(diào)查隨機(jī)抽查了50人,他們的月收入情況與對(duì)地鐵票價(jià)格態(tài)度如下表:

月收入(單位:百元)

認(rèn)為票價(jià)合理的人數(shù)

1

2

3

5

3

4

認(rèn)為票價(jià)偏高的人數(shù)

4

8

12

5

2

1

1)若以區(qū)間的中點(diǎn)值作為月收入在該區(qū)間內(nèi)人的人均月收入求參與調(diào)查的人員中認(rèn)為票價(jià)合理者的月平均收入與認(rèn)為票價(jià)偏高者的月平均收入的差是多少(結(jié)果保留2位小數(shù));

2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表分析是否有的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)地鐵票價(jià)的態(tài)度有差異

月收入不低于5500元人數(shù)

月收入低于5500元人數(shù)

合計(jì)

認(rèn)為票價(jià)偏高者

認(rèn)為票價(jià)合理者

合計(jì)

附:

0.05

0.01

3.841

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案