函數(shù)y=sinx與y=cosx在數(shù)學公式內(nèi)的交點為P,在點P處兩函數(shù)的切線與x軸所圍成的三角形的面積為________.


分析:先聯(lián)立y=sinx與y=cosx求出在[0,]內(nèi)的交點為P坐標,然后求出該點處兩切線方程,從而求出三角形的三個頂點坐標,最后根據(jù)面積公式解之即可.
解答:聯(lián)立方程
解得y=sinx與y=cosx在[0,]內(nèi)的交點為P坐標是( ,),
則易得兩條切線方程分別是y-=(x-)和y-=-(x-),
y=0時,x=-1,x=+1,
于是三角形三頂點坐標分別為 ( );( -1,0);( +1,0),
s=×2×=,
即它們與x軸所圍成的三角形的面積是
故答案為:
點評:本題主要考查了利用導數(shù)研究函數(shù)的再某點切線方程,以及三角方程和三角形面積公式,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)圖象相同的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx與y=tanx的圖象在(-
π
2
,
π
2
)上的交點有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx與y=cosx在[0,
π
2
]
內(nèi)的交點為P,在點P處兩函數(shù)的切線與x軸所圍成的三角形的面積為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在同一坐標系中,函數(shù)y=sinx與y=cosx的圖象不具有下述哪種性質(zhì)(  )
A、y=sinx的圖象向左平移
π
2
個單位后,與y=cosx的圖象重合
B、y=sinx與y=cosx的圖象各自都是中心對稱曲線
C、y=sinx與y=cosx的圖象關于直線x=
π
4
互相對稱
D、y=sinx與y=cosx在某個區(qū)間[x0,x0+π]上都為增函數(shù)

查看答案和解析>>

同步練習冊答案