【題目】設函數(shù)f(x)= .
(1)求函數(shù)f(x)在[0,2]上得單調區(qū)間;
(2)當m=0,k∈R時,求函數(shù)g(x)=f(x)﹣kx2在R上零點個數(shù).
【答案】
(1)解: ,
當2﹣m≤0,即m≥2時,x∈[0,2],f′(x)≥0,f(x)在[0,2]上單調遞增;
當0<m<2時,令f′(x)<0,得0<x<2﹣m,令f′(x)>0,得2﹣m<x<2,
所以f(x)在[0,2﹣m]上單調遞減,在[2﹣m,2]上單調遞增;
當m≤0時,f′(x)≤0,f(x)在[0,2]上單調遞減
(2)解:由g(x)=f(x)﹣kx2=0 ,
令 , ,由 或 ,
由 或 ,
∴h(x)在 上單調遞減,在 上單調遞增
在x<0時,當 時,h(x)取得極小值,且 ,
當x→﹣∞時,h(x)→+∞;x→0時,h(x)→+∞.
在x>0時,當 時,h(x)取得極小值 ,
當x→0時,h(x)→+∞,x→+∞時,h(x)→0.
綜上結合圖形得當 沒有零點,當 有一個零點,
當 或 有二個零點,當 時有三個零點
【解析】(1)求出函數(shù)的導數(shù),通過討論m的范圍,確定導數(shù)的符號,從而求出函數(shù)的單調區(qū)間即可;(2)將m=0代入g(x),令g(x)=0,分離出k,根據(jù)函數(shù)的單調性求出k的范圍,從而判斷出零點的個數(shù).
【考點精析】利用利用導數(shù)研究函數(shù)的單調性對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐D﹣ABC中,已知AB=BC=AD= ,BD=AC=2,BC⊥AD,則三棱錐D﹣ABC外接球的表面積為( )
A.6π
B.12π
C.6 π
D.6 π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是海岸線上的三個集鎮(zhèn), 位于的正南方向處, 位于的北偏東60°方向處;
(1)為了緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上直達航線,使, .勘測時發(fā)現(xiàn)以為圓心, 為半徑的扇形區(qū)域為淺水區(qū),不適宜船只航行,問此航線是否影響船只航行?
(2)為了發(fā)展經(jīng)濟需要,政府計劃填海造陸,建造一個商業(yè)區(qū)(如圖四邊形所示),其中, , ,求該商業(yè)區(qū)的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中, , 且, 和都是邊長為2的等邊三角形,設在底面的投影為.
(1)求證: 是的中點;
(2)證明: ;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中為實數(shù).
(1)已知函數(shù)是奇函數(shù),直線是曲線的切線,且, ,求直線的方程;
(2)討論的單調性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某海關對同時從三個不同地區(qū)進口的某種商品進行隨機抽樣檢測,已知從三個地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測人員再用分層抽樣的方法從海關抽樣的這些商品中隨機抽取6件樣品進行檢測.
(1)求這6件樣品中,來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件送往另一機構進行進一步檢測,求這2件樣品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:
時間 | 第4天 | 第32天 | 第60天 | 第90天 |
價格(千元) | 23 | 30 | 22 | 7 |
(1)寫出價格關于時間的函數(shù)關系式;(表示投放市場的第天);
(2)銷售量與時間的函數(shù)關系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com