如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線排,現(xiàn)要在矩形區(qū)域內沿直線將接通.已知,,公路兩側排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設所成的小于的角為

(Ⅰ)求矩形區(qū)域內的排管費用關于的函數(shù)關系式;
(Ⅱ)求排管的最小費用及相應的角

(Ⅰ);(Ⅱ)最小費用為萬元,相應的角.

解析試題分析:(Ⅰ)把,的長度分別用表示,分別求出費用相加即可;(Ⅱ)對(Ⅰ)中函數(shù),用導數(shù)為工具,判斷其單調區(qū)間,求出最小值.
試題解析:(Ⅰ)如圖,過,垂足為,由題意得,
故有,.       4分
所以   5分

.      8分
(Ⅱ)設(其中),
.            10分
,即,得.             11分
列表






+
0
-

單調遞增
極大值
單調遞減
所以當時有,此時有.       15分
答:排管的最小費用為萬元,相應的角.            16分
考點:函數(shù)的應用、導數(shù)的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(理)已知函數(shù)f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值與最小值;
(Ⅱ)若f(x)<4-At對于任意的x∈[1,3],t∈[0,2]恒成立,求實數(shù)A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導函數(shù) 的最小值為
(1)求的值;
(2)求函數(shù)的單調遞增區(qū)間,并求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù)
(1)求曲線在點處的切線方程;  (2)當時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為實數(shù),函數(shù)
(Ⅰ)求的單調區(qū)間與極值;
(Ⅱ)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當a=2時,求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若的極值點,求實數(shù)的值;
(2)若上為增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)在區(qū)間[1,3]上的極值。

查看答案和解析>>

同步練習冊答案