【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的普通方程;
(2)直線與曲線在第一象限內(nèi)的交點(diǎn)為,過點(diǎn)的直線交曲線于兩點(diǎn),且的中點(diǎn)為,求直線的斜率.
【答案】(1) 的極坐標(biāo)方程,曲線的普通方程 (2)-4
【解析】
(1)對于,根據(jù)圓心和半徑,得出其極坐標(biāo)方程,對于,利用消去參數(shù),化簡為直角坐標(biāo)方程.(2)求出直線的參數(shù)方程,代入得到關(guān)于的一元二次方程,利用韋達(dá)定理以及直線參數(shù)的幾何意義列方程,由此求得直線的斜率.
(1)曲線的圓心極坐標(biāo)為,半徑為1,所以,其極坐標(biāo)方程為.
由題意得:,,曲線的普通方程.
(2)當(dāng)時,,,所以,
于是直線的參數(shù)方程為(為傾斜角,為參數(shù)),
代入的普通方程,整理得關(guān)于的方程
.①
因?yàn)榍截直線所得線段的中點(diǎn)在內(nèi),設(shè)對應(yīng)的參數(shù)為,,則.
由韋達(dá)定理得:,,.
所以,直線的斜率為-4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 ()的左、右焦點(diǎn)分別為,過的直線交橢圓于,兩點(diǎn),若橢圓的離心率為,的周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點(diǎn),,設(shè)弦,的中點(diǎn)分別為,證明:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn).
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大;
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是單位圓上的動點(diǎn),點(diǎn)是直線上的動點(diǎn),定義,則的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個說法:
①殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)的值越大,說明擬合的效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均增加個單位;
④對分類變量與,若它們的隨機(jī)變量的觀測值越小,則判斷“與有關(guān)系”的把握程度越大.
其中正確的說法是
A. ①④B. ②④C. ①③D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于不同的兩點(diǎn)、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的甲、乙兩名工程師因?yàn)楣ぷ餍枰髯赃x購一臺筆記本電腦.該公司提供了三款筆記本電腦作為備選,這三款筆記本電腦在某電商平臺的銷量和用戶評分如下表所示:
型號 | |||
銷量(臺) | 2000 | 2000 | 4000 |
用戶評分 | 8 | 6.5 | 9.5 |
若甲選購某款筆記本電腦的概率與對應(yīng)的銷量成正比,乙選購某款筆記本電腦的概率與對應(yīng)的用戶評分減去5的值成正比,且他們兩人選購筆記本電腦互不影響.
(1)求甲、乙兩人選購不同款筆記本電腦的概率;
(2)若公司給購買這三款筆記本電腦的員工一定的補(bǔ)貼,補(bǔ)貼標(biāo)準(zhǔn)如下表:
型號 | |||
補(bǔ)貼(千元) | 3 | 4 | 5 |
記甲、乙兩人獲得的公司補(bǔ)貼之和為千元,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全體非負(fù)整數(shù)0,1,2,…,按其自然順序組成一個小數(shù) 456 789 101 112 131 415 161 718 19 ….問:是否為無理數(shù)?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com