【題目】已知函數(shù)

(1)若函數(shù)的最小值是,且c1,,求F(2)F(2)的值;

(2)a1,c0,且在區(qū)間(0,1]上恒成立,試求b的取值范圍.

【答案】(1)8;(2)[2,0]

【解析】

1)由函數(shù)fx)的最小值是f(﹣1)=0,且c1,解得a,b的值,得到fx)解析式代入到Fx)中,計(jì)算出F2+F(﹣2)的值;

2)由a1,c0,則fx)=x2+bx,把問題﹣1fx)≤1在區(qū)間(0,1]上恒成立轉(zhuǎn)化為﹣xbx在區(qū)間(0,1]上恒成立,研究﹣xx在(0,1]的單調(diào)性求出最值,從而得到b的取值范圍.

(1)由已知c1,abc0,且-=-1,解得a1,b2,∴f(x)(x1)2.

,∴F(2)F(2)(21)2[(21)2]8.

(2)f(x)x2bx,原命題等價(jià)于-1≤x2bx≤1(0,1]上恒成立,

bxbx(0,1]上恒成立.

y=x單調(diào)遞增,故最小值為0,y=-x=-(+x當(dāng)且僅當(dāng) 取等.

∴-2≤b≤0.b的取值范圍是[2,0].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司需要對(duì)所生產(chǎn)的三種產(chǎn)品進(jìn)行檢測,三種產(chǎn)品數(shù)量(單位:件)如下表所示:

產(chǎn)品

A

B

C

數(shù)量(件)

180

270

90

采用分層抽樣的方法從以上產(chǎn)品中共抽取6.

1)求分別抽取三種產(chǎn)品的件數(shù);

2)將抽取的6件產(chǎn)品按種類編號(hào),分別記為,現(xiàn)從這6件產(chǎn)品中隨機(jī)抽取2.

(。┯盟o編號(hào)列出所有可能的結(jié)果;

(ⅱ)求這兩件產(chǎn)品來自不同種類的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P到定點(diǎn)的距離比它到直線的距離小2,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C

求曲線C的方程;

若直線與曲線C和圓從左至右的交點(diǎn)依次為A,B,CD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 的焦距與橢圓 的短軸長相等,且的長軸長相等,這兩個(gè)橢圓在第一象限的交點(diǎn)為,直線經(jīng)過軸正半軸上的頂點(diǎn)且與直線為坐標(biāo)原點(diǎn))垂直, 的另一個(gè)交點(diǎn)為, 交于, 兩點(diǎn).

(1)求的標(biāo)準(zhǔn)方程;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的個(gè)數(shù)是(  )

①命題“任意”的否定是“任意;

②命題“若,則”的逆否命題是真命題;

③若命題為真,命題為真,則命題為真;

④命題“若,則”的否命題是“若,則.

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)檢部門對(duì)某工廠甲、乙兩個(gè)車間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測.甲、乙兩個(gè)車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過20克的為合格.

(1)從甲、乙兩車間分別隨機(jī)抽取2個(gè)零件,求甲車間至少一個(gè)零件合格且乙車間至少一個(gè)零件合格的概率;

(2)質(zhì)檢部門從甲車間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;

(3)若從甲、乙兩車間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:)滿足函數(shù)關(guān)系 km為常數(shù)).若該食品在0的保鮮時(shí)間是64小時(shí),在18的保鮮時(shí)間是16小時(shí),則該食品在36的保鮮時(shí)間是(

A.4小時(shí)B.8小時(shí)C.16小時(shí)D.32小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從, 上分別取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

3

-2

4

0

-4

(1)求的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案