已知圓軸于兩點,曲線是以為長軸,直線:為準線的橢圓.

(1)求橢圓的標準方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.

(1)(2)(3)

解析試題分析:解:(Ⅰ)設橢圓的標準方程為,則:
,從而:,故,所以橢圓的標準方程為。  4分
(Ⅱ)設,則圓方程為 
與圓聯(lián)立消去的方程為,
過定點。                              …………8分 
(Ⅲ)解法一:設,則,………①
,,即:
代入①解得:(舍去正值),      ,所以,
從而圓心到直線的距離,從而, 16分
考點:橢圓的方程
點評:解決直線與圓錐曲線的位置關系的時候,一般采用聯(lián)立方程組的思想來得到,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知半徑為的⊙軸交于、兩點,為⊙的切線,切點為,且在第一象限,圓心的坐標為,二次函數(shù)的圖象經(jīng)過、兩點.

(1)求二次函數(shù)的解析式;
(2)求切線的函數(shù)解析式;
(3)線段上是否存在一點,使得以、、為頂點的三角形與相似.若存在,請求出所有符合條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直線與圓交于、兩點,記△的面積為(其中為坐標原點).
(1)當,時,求的最大值;
(2)當,時,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求直線被圓所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓過點,且與直線相切于點
(1)求圓的方程;
(2)求圓關于直線對稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題11分)已知圓,過原點的直線與圓相交于兩點
(1) 若弦的長為,求直線的方程;
(2)求證:為定值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓方程為
(1)求圓心軌跡的參數(shù)方程C;
(2)點是(1)中曲線C上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

三角形的頂點,重心
(1)求三角形的面積;(2)求三角形外接圓的方程.

查看答案和解析>>

同步練習冊答案