三角形的頂點(diǎn),重心
(1)求三角形的面積;(2)求三角形外接圓的方程.

(1)15;(2)。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓軸于兩點(diǎn),曲線是以為長(zhǎng)軸,直線:為準(zhǔn)線的橢圓.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是直線上的任意一點(diǎn),以為直徑的圓與圓相交于兩點(diǎn),求證:直線必過定點(diǎn),并求出點(diǎn)的坐標(biāo);
(3)如圖所示,若直線與橢圓交于兩點(diǎn),且,試求此時(shí)弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的一動(dòng)點(diǎn).
 
(1)證明:面PAC面PBC;
(2)若,則當(dāng)直線與平面所成角正切值為時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知點(diǎn),直線及圓.
(1)求過點(diǎn)的圓的切線方程;
(2)若直線與圓相切,求的值;
(3)若直線與圓相交于兩點(diǎn),且弦的長(zhǎng)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面直角坐標(biāo)系中O是坐標(biāo)原點(diǎn),,圓的外接圓,過點(diǎn)(2,6)的直線為
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長(zhǎng)為,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓C外一點(diǎn)P向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有
求使得取得最小值的點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C與圓相外切,并且與直線相切于點(diǎn),求圓C的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分8分)
已知直線的方程為,圓的極坐標(biāo)方程為
(Ⅰ)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線和圓的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案