【題目】已知橢圓的兩個焦點為,,橢圓上一動點,距離之和為4,當軸上的射影恰為時,,左、右頂點分別為,,為坐標原點,經(jīng)過點的直線與橢圓交于,兩點.

(1)求橢圓的方程;

(2)記的面積分別為,求的最大值.

【答案】1)橢圓的方程為: 2的最大值為

【解析】

1)先根據(jù)橢圓的定義得,再由軸上的射影恰為時,得關(guān)于的方程,最后結(jié)合橢圓中,解方程組即可求解.

2)根據(jù)題意設(shè)直線的方程為:,與橢圓方程聯(lián)立,得到兩根和、兩根積,再將整理為韋達定理的形式,代入化簡即可求解.

解:(1)由題意知:,所以 ①,

,且,

所以 ②,

③,

由①②③得:,

所以橢圓的方程為:.

(2)由題意直線過點,且斜率不為0,

所以設(shè)直線的方程為:,

聯(lián)立

得:,

設(shè)點,

,

因為,

所以,

,

所以,

當且僅當時,等號成立,

所以的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,的中點,的中點,的中點,,,平面.

1)求證:平面平面

2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,已知菱形的對角線交于點,點為線段的中點,,將三角形沿線段折起到的位置,,如圖2所示.

(Ⅰ)證明:平面 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定口徑誤差的計算方式為:管件內(nèi)外兩個口徑實際長分別為,標準長分別為口徑誤差只要口徑誤差不超過就認為合格,已知這臺車床分晝夜兩個獨立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.

(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;

(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗,則每件產(chǎn)品的檢驗費用為2.5元;若有不合格品進入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Γ的左,右焦點分別為F1(,0)F2(,0),橢圓的左,右頂點分別為A,B,已知橢圓Γ上一異于AB的點P,PA,PB的斜率分別為k1,k2,滿足.

1)求橢圓Γ的標準方程;

2)若過橢圓Γ左頂點A作兩條互相垂直的直線AMAN,分別交橢圓ΓM,N兩點,問x軸上是否存在一定點Q,使得MQA=∠NQA成立,若存在,則求出該定點Q,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩個同樣的紅球、兩個同樣的黑球和兩個同樣的白球放入下列6個格中,要求同種顏色的球不相鄰,則可能的放球方法共有______.(用數(shù)字作答)

1

2

3

4

5

6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為且滿足表示的面積.

(1)證明: 平面;

(2)當時,二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為

Ⅰ)求曲線的方程;

Ⅱ)不垂直于軸且不過點的直線與曲線相交于兩點,若直線的斜率之和為0,則動直線是否一定經(jīng)過一定點?若過一定點,則求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩動圓),把它們的公共點的軌跡記為曲線,若曲線軸的正半軸的交點為,且曲線上的相異兩點滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經(jīng)過一定點,并求此定點的坐標;

3)求面積的最大值.

查看答案和解析>>

同步練習冊答案