【題目】已知兩動圓和(),把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,且曲線上的相異兩點滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點,并求此定點的坐標;
(3)求面積的最大值.
【答案】(1);(2)見解析;(3).
【解析】
(1)設兩動圓的公共點為,由橢圓定義得出曲線是橢圓,并得出、、的值,即可得出曲線的方程;
(2)求出點,設點,,對直線的斜率是否存在分兩種情況討論,在斜率存在時,設直線的方程為,并將該直線方程與橢圓的方程聯(lián)立,列出韋達定理,結合條件并代入韋達定理求出的值,可得出直線所過點的坐標,在直線的斜率不存在時,可得出直線的方程為,結合這兩種情況得出直線所過定點坐標;
(3)利用韋達定理求出面積關于的表達式,換元,然后利用基本不等式求出的最大值.
(1)設兩動圓的公共點為,則有:.
由橢圓的定義可知的軌跡為橢圓,,,所以曲線的方程是:;
(2)由題意可知:,設,,
當的斜率存在時,設直線,聯(lián)立方程組:
,把②代入①有:,
③,④,
因為,所以有,
,把③④代入整理:
,(有公因式)繼續(xù)化簡得:
,或(舍),
當的斜率不存在時,易知滿足條件的直線為:
過定點,綜上,直線恒過定點;
(3)面積,
由第(2)小題的③④代入,整理得:,
因在橢圓內(nèi)部,所以,可設,
,,(時取到最大值).
所以面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知點F1,F(xiàn)2分別為橢圓的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為,且△PF1F2的最大面積為1.
(Ⅰ)求橢圓C的方程.
(Ⅱ)點M的坐標為,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點.對于任意的是否為定值?若是求出這個定值;若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右頂點分別為,,左、右焦點分別為,,離心率為,點,為線段的中點.
()求橢圓的方程.
()若過點且斜率不為的直線與橢圓交于、兩點,已知直線與相交于點,試判斷點是否在定直線上?若是,請求出定直線的方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為正方體ABCD-A1B1C1D1,動點M從B1點出發(fā),在正方體表面沿逆時針方向運動一周后,再回到B1的運動過程中,點M與平面A1DC1的距離保持不變,運動的路程x與l=MA1+MC1+MD之間滿足函數(shù)關系l=f(x),則此函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)參加項目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實的需要,從項目中調(diào)出人參與項目的售后服務工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項目從事售后服務工作?
(2)在(1)的條件下,當從項目調(diào)出的人數(shù)不能超過總人數(shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連續(xù)投骰子兩次得到的點數(shù)分別為m,n,作向量(m,n),則與(1,﹣1)的夾角成為直角三角形內(nèi)角的概率是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的方程為,其中常數(shù),是拋物線的焦點.
(1)若直線被拋物線所截得的弦長為6,求的值;
(2)設是點關于頂點的對稱點,是拋物線上的動點,求的最大值;
(3)設,、是兩條互相垂直,且均經(jīng)過點的直線,與拋物線交于點、,與拋物線交于點、,若點滿足,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前6項依次成等比數(shù)列,設公比為q(),數(shù)列從第5項開始各項依次為等差數(shù)列,其中,數(shù)列的前n項和為.
(1)求公比q及數(shù)列的通項公式;
(2)若,求項數(shù)n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com