已知橢圓)的一個頂點為,離心率為,直線與橢圓交于不同的兩點、.(1) 求橢圓的方程;(2) 當的面積為時,求的值.

(1);  (2) .

解析試題分析:(1)易知橢圓的焦點在x軸上,因為橢圓的一個頂點為,所以a=2,又因為離心率為,所以c=,所以,所以橢圓的方程為。
(2)設,聯(lián)立直線方程和橢圓方程

點A到直線的距離為,
所以,解得。
考點:橢圓的簡單性質;橢圓的標準方程;直線與橢圓的綜合應用;點到直線的距離公式;弦長公式。
點評:本題主要考查橢圓方程的求法和弦長的運算,解題時要注意橢圓性質的靈活運用和弦長公式的合理運用。在求直線與圓錐曲線相交的弦長時一般采用韋達定理設而不求的方法,在求解過程中一般采取步驟為:設點→聯(lián)立方程→消元→韋達定理→弦長公式。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)
已知橢圓的離心率為,一條準線

(1)求橢圓的方程;
(2)設O為坐標原點,上的點,為橢圓的右焦點,過點FOM的垂線與以OM為直徑的圓交于兩點.
①若,求圓的方程;
②若l上的動點,求證:點在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點C,使得三角形ABC是正三角形? 若存在,求出點C的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心為直角坐標系的原點,焦點在軸上,它的一個頂點到兩個焦點的距離分別是7和1
(1)求橢圓的方程
(2)若為橢圓的動點,為過且垂直于軸的直線上的點,(e為橢圓C的離心率),求點的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在原點,它的準線過雙曲線的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓:的一個頂點為,離心率為.直線與橢圓交于不同的兩點M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當△AMN得面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)

過拋物線焦點垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點F的直線交拋物線于、 兩點。過、作準線的垂線,垂足分別為.

(1)求出拋物線的通徑,證明都是定值,并求出這個定值;
(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分10分)(Ⅰ) 設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,利用(Ⅰ)的結論直接寫出的值。(不必寫出推理過程)

查看答案和解析>>

同步練習冊答案