【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線C2的直角坐標(biāo)方程為.
(1)若直線l與曲線C1交于M、N兩點(diǎn),求線段MN的長度;
(2)若直線l與x軸,y軸分別交于A、B兩點(diǎn),點(diǎn)P在曲線C2上,求的取值范圍.
【答案】(1)(2)
【解析】
(1)將直線l的參數(shù)方程消去參數(shù),得到直角坐標(biāo)方程,將圓C1的極坐標(biāo)方程,轉(zhuǎn)化為直角坐標(biāo)方程,然后利用“r,d”法求弦長.
(2)將曲線C2的直角坐標(biāo)方程轉(zhuǎn)換為參數(shù)方程為(0≤θ≤π),由A(1,0),B(0,1),P(2cosθ,2sinθ),得到,的坐標(biāo),再利用數(shù)量積公式得到,然后用正弦函數(shù)的性質(zhì)求解.
(1)直線l的參數(shù)方程為(t為參數(shù)),消去參數(shù),
得直角坐標(biāo)方程為x+y﹣1=0,
因?yàn)榍C1的極坐標(biāo)方程為,
所以
所以直角坐標(biāo)方程為x2+y2﹣2x+2y=0,
標(biāo)準(zhǔn)式方程為(x﹣1)2+(y+1)2=2,
所以圓心(1,﹣1)到直線x+y﹣1=0的距離d,
所以弦長|MN|=2.
(2)因?yàn)榍C2的直角坐標(biāo)方程為.
所以x2+y2=4,轉(zhuǎn)換為參數(shù)方程為(0≤θ≤π).
因?yàn)?/span>A(1,0),B(0,1),點(diǎn)P在曲線C2上,故P(2cosθ,2sinθ),
所以,,(0≤θ≤π),
所以,
因?yàn)?/span>
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機(jī)變量越大,說明“與有關(guān)系”的可信度越大;
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是和;
③在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④若變量和滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān).
正確的個(gè)數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)求的單調(diào)區(qū)間;
(Ⅱ)若R上有兩個(gè)不同的零點(diǎn),且,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在,上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在處的切線平行于軸,是否存在整數(shù),使不等式在時(shí)恒成立?若存在,求出的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個(gè)全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學(xué)方法設(shè)計(jì)自己的家園.英國數(shù)學(xué)家麥克勞林通過計(jì)算得到∠B′C′D′=109°28′16'.已知一個(gè)房中BB'=5,AB=2,tan54°44′08',則此蜂房的表面積是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甘肅省是土地荒漠化較為嚴(yán)重的省份,一代代治沙人為了固沙、治沙,改善生態(tài)環(huán)境,不斷地進(jìn)行研究與實(shí)踐,實(shí)現(xiàn)了沙退人進(jìn).年,古浪縣八步沙林場“六老漢”三代人治沙群體作為優(yōu)秀代表,被中宣部授予“時(shí)代楷!狈Q號(hào).在治沙過程中為檢測某種固沙方法的效果,治沙人在某一實(shí)驗(yàn)沙丘的坡頂和坡腰各布設(shè)了個(gè)風(fēng)蝕插釬,以測量風(fēng)蝕值.(風(fēng)蝕值是測量固沙效果的指標(biāo)之一,數(shù)值越小表示該插釬處被風(fēng)吹走的沙層厚度越小,說明固沙效果越好,數(shù)值為表示該插釬處沒有被風(fēng)蝕)通過一段時(shí)間的觀測,治沙人記錄了坡頂和坡腰全部插釬測得的風(fēng)蝕值(所測數(shù)據(jù)均不為整數(shù)),并繪制了相應(yīng)的頻率分布直方圖.
(Ⅰ)根據(jù)直方圖估計(jì)“坡腰處一個(gè)插釬風(fēng)蝕值小于”的概率;
(Ⅱ)若一個(gè)插釬的風(fēng)蝕值小于,則該數(shù)據(jù)要標(biāo)記“”,否則不標(biāo)記根據(jù)以上直方圖,完成列聯(lián)表:
標(biāo)記 | 不標(biāo)記 | 合計(jì) | |
坡腰 | |||
坡頂 | |||
合計(jì) |
并判斷是否有的把握認(rèn)為數(shù)據(jù)標(biāo)記“”與沙丘上插釬所布設(shè)的位置有關(guān)?
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當(dāng)|a|≤2時(shí)函數(shù)f(x)只有一個(gè)極值點(diǎn);
(2)當(dāng)a=π時(shí),求f(x)的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機(jī)抽樣其中200名購房者,并對(duì)其購房面積(單位:萬元/平方米,進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市2018年1月至2019年1月期間當(dāng)月在售二手房均價(jià)(單位:萬元平方米),制成了如圖2所示的散點(diǎn)圖(圖中月份代碼1-13分別對(duì)應(yīng)2018年1月至2019年1月).
(1)試估計(jì)該市市民的平均購房面積.
(2)現(xiàn)采用分層抽樣的方法從購房面積位于的40位市民中隨機(jī)取4人,再從這4人中隨機(jī)抽取2人,求這2人的購房面積恰好有一人在的概率.
(3)根據(jù)散點(diǎn)圖選和兩個(gè)模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為和,并得到一些統(tǒng)計(jì)量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測2019年6月份的二手房購房均價(jià)(精確到0.001)./span>
參考數(shù)據(jù):,,,,,,,,
參考公式:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com