【題目】甘肅省是土地荒漠化較為嚴重的省份,一代代治沙人為了固沙、治沙,改善生態(tài)環(huán)境,不斷地進行研究與實踐,實現(xiàn)了沙退人進.年,古浪縣八步沙林場“六老漢”三代人治沙群體作為優(yōu)秀代表,被中宣部授予“時代楷模”稱號.在治沙過程中為檢測某種固沙方法的效果,治沙人在某一實驗沙丘的坡頂和坡腰各布設(shè)了個風蝕插釬,以測量風蝕值.(風蝕值是測量固沙效果的指標之一,數(shù)值越小表示該插釬處被風吹走的沙層厚度越小,說明固沙效果越好,數(shù)值為表示該插釬處沒有被風蝕)通過一段時間的觀測,治沙人記錄了坡頂和坡腰全部插釬測得的風蝕值(所測數(shù)據(jù)均不為整數(shù)),并繪制了相應(yīng)的頻率分布直方圖.

)根據(jù)直方圖估計“坡腰處一個插釬風蝕值小于”的概率;

)若一個插釬的風蝕值小于,則該數(shù)據(jù)要標記“”,否則不標記根據(jù)以上直方圖,完成列聯(lián)表:

標記

不標記

合計

坡腰

坡頂

合計

并判斷是否有的把握認為數(shù)據(jù)標記“”與沙丘上插釬所布設(shè)的位置有關(guān)?

附:.

【答案】;()列聯(lián)表見解析,有的把握認為數(shù)據(jù)標記“”與沙丘上插釬所布設(shè)的位置有關(guān).

【解析】

)根據(jù)頻率分布直方圖可估計“坡腰處一個插釬風蝕值小于”的概率;

)根據(jù)兩幅頻率分布直方圖完善列聯(lián)表,并根據(jù)列聯(lián)表計算出的觀測值,結(jié)合臨界值表可得出結(jié)論.

)設(shè)“坡腰處一個插釬風蝕值小于”為事件,;

)完成列聯(lián)表如下:

標記

不標記

合計

坡腰

坡頂

合計

根據(jù)列聯(lián)表,計算得:.

所以有的把握認為,數(shù)據(jù)標記“”與沙丘上插釬所布設(shè)的位置有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】六個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復(fù)數(shù)字的四位奇數(shù),有__________個這樣的四位奇數(shù)(用數(shù)字填寫答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,,,二面角S-BD-C的余弦值為

I)證明:平面平面SBD;

(Ⅱ)求二面角A-SD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的頂點為A,高和底面的半徑相等,BE是底面圓的一條直徑,點D為底面圓周上的一點,且∠ABD60°,則異面直線ABDE所成角的正弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為,曲線C2的直角坐標方程為.

1)若直線l與曲線C1交于M、N兩點,求線段MN的長度;

2)若直線lx軸,y軸分別交于AB兩點,點P在曲線C2上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)建文明城”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù),滿分100分),從中隨機抽取一個容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40100]內(nèi).現(xiàn)將這些分數(shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯誤的是(

A.第三組的頻數(shù)為18

B.根據(jù)頻率分布直方圖估計眾數(shù)為75

C.根據(jù)頻率分布直方圖估計樣本的平均數(shù)為75

D.根據(jù)頻率分布直方圖估計樣本的中位數(shù)為75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐SABCD中,側(cè)面SCD為鈍角三角形且垂直于底面ABCDCDSD,點MSA的中點,AD//BC,∠ABC90°,ABADBCa

1)求證:平面MBD⊥平面SCD;

2)若∠SDC120°,求三棱錐CMBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,半徑為2的圓相切,圓心軸上且在直線的右上方.

1)求圓的方程;

2)過點的直線與圓交于,兩點(軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點在底面上的射影為底面的中心點,點在棱上,且的面積為1.

1)若點的中點,求證:平面平面;

2)在棱上是否存在一點使得二面角的余弦值為?若存在,求出點的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案