【題目】已知定點,直線相交于點,且它們的斜率之積為,記動點的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)直線與曲線交于、兩點,若直線斜率之積為,求證:直線過定點,并求定點坐標.

【答案】(1)曲線的方程為 ;(2)直線過定點,定點坐標為.

【解析】試題分析:(Ⅰ)設(shè)動點,則 , ,即,化簡即可得結(jié)果;(Ⅱ)設(shè)的方程為,則聯(lián)立方程組

,消去,設(shè),根據(jù)斜率公式及韋達定理可得解得解得,驗證當(dāng)時,直線的方程為.直線過定點.

試題解析:(Ⅰ)設(shè)動點,則 ,

,即,

化簡得: ,由已知,

故曲線的方程為 .

(Ⅱ)由已知直線斜率為0時,顯然不滿足條件。

當(dāng)直線 斜率不為0時,設(shè)的方程為,則聯(lián)立方程組

,消去,

設(shè),則,

直線斜率分別為 ,

,

由已知得,化簡得,解得,

當(dāng)時,直線的方程為過點A,顯然不符合條件,故舍去;

當(dāng)時,直線的方程為.直線過定點.

綜上,直線過定點,定點坐標為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師給出一個函數(shù),甲、乙、丙、丁四個同學(xué)各說出了這個函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對稱;。不是函數(shù)的最小值.老師說:你們四個同學(xué)中恰好有三個人說的正確.那么,你認為____說的是錯誤的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的無窮數(shù)列的前項和為,且滿足(其中為常數(shù)), .數(shù)列滿足.

(1)證明數(shù)列是等差數(shù)列,并求出的通項公式;

(2)若無窮等比數(shù)列滿足:對任意的,數(shù)列中總存在兩個不同的項 使得,求的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,平面,,,則直線與平面所成角的大小為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司決定對旗下的某商品進行一次評估,該商品原來每件售價為25元,年銷售8萬件.

(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了抓住2022年冬奧會契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和銷售策略改革,并提高定價到元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量至少達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.

(Ⅰ)試確定 的值,并估計每日應(yīng)準備紀念品的數(shù)量;

(Ⅱ)為了迎接春節(jié),商場進行讓利活動,一次購物款元及以上的一次返利元;一次購物不超過元的按購物款的百分比返利,具體見下表:

一次購物款(單位:元)

返利百分比

請問該商場日均大約讓利多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,過左焦點且斜率為的直線交橢圓兩點,線段的中點為,直線交橢圓兩點.

(1)求橢圓的方程;

(2)求證:點在直線上;

(3)是否存在實數(shù),使得?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斜率為k的直線l經(jīng)過拋物線yx2的焦點F,且與拋物線相交于AB兩點,若線段|AB|的長為8.

(1)求拋物線的焦點F的坐標和準線方程;

(2)求直線的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,),記函數(shù)的導(dǎo)函數(shù)為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)是否存在實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案