【題目】如圖,四棱柱中,側棱底面,,,,,為棱的中點.
(1)證明;
(2)求二面角的余弦值;
(3)設點在線段上,且直線與平面所成角的正弦值為,求線段的長.
【答案】(1)見證明;(2);(3)
【解析】
(Ⅰ)以點為原點建立空間直角坐標系,寫出點的坐標,寫出向量,,計算兩向量的數(shù)量積即可證明垂直(Ⅱ)利用向量的坐標,分別求出平面的法向量,平面的法向量,即可計算二面角的余弦值(III)設,寫出,求平面的一個法向量,利用線面角公式寫出直線與平面所成角的正弦值且為,可解出,即可求解線段的長.
(I)以點為原點建立空間直角坐標系,如圖,
依題意得,,,
,,.
則,,
而.
所以.
(II),,
設平面的法向量為,則,
即,取.
設平面的法向量為,則,
即,取.
,
所以二面角的余弦值為.
(III),,
設,有.
取為平面的一個法向量,
設為直線與平面所成的角,
則
.
于是,解得.
所以.
所以線段的長為.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在(-∞,+∞)上有意義,且對于任意的x,y∈R,有|f(x)-f(y)|<|x-y|并且函數(shù)f(x+1)的對稱中心是(-1,0),若函數(shù)g(x)-f(x)=x,則不等式g(2x-x2)+g(x-2)<0的解集是( ).
A.B.
C.,D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小李在做一份調(diào)查問卷,共有4道題,其中有兩種題型,一種是選擇題,共2道,另一種是填空題,共2道.
(1)小李從中任選2道題解答,每一次選1題(不放回),求所選的題不是同一種題型的概率;
(2)小李從中任選2道題解答,每一次選1題(有放回),求所選的題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正△ABC的邊長為2, CD是AB邊上的高,E、F分別是AC和BC的中點(如圖(1)).現(xiàn)將△ABC沿CD翻成直二面角A-DC-B(如圖(2)).在圖(2)中:
(1)求證:AB∥平面DEF;
(2)在線段BC上是否存在一點P,使AP⊥DE?證明你的結論;
(3)求二面角E-DF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若實數(shù),滿足,則的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫出可行域,向上平移目標函數(shù)到可行域邊界的位置,由此求得目標函數(shù)的最小值.
畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最小值為.故選C.
【點睛】
本小題主要考查線性規(guī)劃的知識,考查線性目標函數(shù)的最值的求法,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.畫可行域時,要注意判斷不等式所表示的范圍是在直線的哪個方位,不一定是三條直線圍成的三角形.還要注意目標函數(shù)化成斜截式后,截距和目標函數(shù)的對應關系,截距最大時,目標函數(shù)不一定取得最大值,可能取得最小值.
【題型】單選題
【結束】
12
【題目】已知,是橢圓長軸上的兩個端點,,是橢圓上關于軸對稱的兩點,直線,的斜率分別為,若橢圓的離心率為,則的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點到達點的位置,且.
(1)證明:平面平面;
(2)為線段上一點,為線段上一點,且,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com