(本小題滿分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點(diǎn),平面與平面交于,求證:

(1)平面;
(2)

(1)對于線面平行的證明主要是根據(jù)線面平行的判定定理來,關(guān)鍵是解決 的平行的證明即可。
(2) 平面平面,則結(jié)合面面平行的性質(zhì)定理得到線線平行,比較容易得到結(jié)論。

解析試題分析:證明:(1)如圖,取的中點(diǎn),連接

分別是的中點(diǎn),

平面平面,
平面
的中點(diǎn),四邊形是平行四邊形,

平面平面,
平面
,
平面平面
平面,
平面.  
(2)平面平面,且平面平面,
平面平面           
 
考點(diǎn):線面平行,和線線平行
點(diǎn)評:解決的關(guān)鍵是對于線面平行和線線平行的判定定理的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=900,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE
折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為,在直線DE上是否存在一點(diǎn),使得∥面BCD?若存在,請指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請說明理由;
   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱的所有棱長都為2,中點(diǎn),平面

(1)求證:平面;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
三棱錐中,,

(1) 求證:面
(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共13分)
如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)E為的中點(diǎn)。

(Ⅰ)求證:     
(Ⅱ) 求證:
(Ⅲ)在線段AB上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在邊長為2的正方體中,EBC的中點(diǎn),F的中點(diǎn)

(1)求證:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,四邊形為矩形,平面,上的點(diǎn),且平面.

(1)求證:;
(2)求三棱錐的體積;
(3)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,棱長為2的正方體中,E,F滿足

(Ⅰ)求證:EF//平面AB;
(Ⅱ)求證:EF;

查看答案和解析>>

同步練習(xí)冊答案