(本小題滿(mǎn)分12分)
三棱錐中,,,
(1) 求證:面面
(2) 求二面角的余弦值.
(1)取BC中點(diǎn)O,連接AO,PO,通過(guò)△POA≌△POB≌△POC,得到∠POA=∠POB=∠POC=90°,推出PO⊥面BCD,∴面PBC⊥面ABC。
(2)cos(n1, n2)==。
解析試題分析:(1) 證明:取BC中點(diǎn)O,連接AO,PO,由已知△BAC為直角三角形,
所以可得OA=OB=OC,又知PA=PB=PC,
則△POA≌△POB≌△POC 2分
∴∠POA=∠POB=∠POC=90°,∴PO⊥OB,PO⊥OA,OB∩OA=O
所以PO⊥面BCD, 4分
面ABC,∴面PBC⊥面ABC 5分
(2) 解:過(guò)O作OD與BC垂直,交AC于D點(diǎn),
如圖建立坐標(biāo)系O—xyz
則,,,,
7分
設(shè)面PAB的法向量為n1=(x,y,z),由n1· =0,n1·=0,可知n1=(1,-,1)
同理可求得面PAC的法向量為n1=(3,,1) 10分
cos(n1, n2)== 12分
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,(2)小題,應(yīng)用空間向量,使問(wèn)題解答得以簡(jiǎn)化。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn).
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,在三棱錐中,,,,,, 點(diǎn),分別在棱上,且,
(Ⅰ)求證:平面PAC
(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點(diǎn),平面與平面交于,求證:
(1)平面;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共12分)
在如圖的多面體中,⊥平面,,,,,,, 是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
如圖1,在等腰梯形中,,,,為上一點(diǎn), ,且.將梯形沿折成直二面角,如圖2所示.
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,點(diǎn)在所在平面內(nèi),且直線與平面所成的角為,試求出點(diǎn)到點(diǎn)的最短距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com