如圖,三棱柱的所有棱長都為2,為中點,平面
(1)求證:平面;
(2)求二面角的余弦值;
(3)求點到平面的距離.
(1) (2)
解析試題分析:(1)取中點,連結(jié).
為正三角形,.
在正三棱柱中, 平面平面,
平面.
取中點,以為原點,,,的方向為軸的正方向建立直角坐標(biāo)系,則,,,,,
,,.
,,
,. 平面.
(2)設(shè)平面的法向量為.
,.,,
令得
由(1)知平面,為平面的法向量.
二面角的余弦值為.
(3)由(2),為平面法向量,
.
點到平面的距離.
考點:空間中二面角以及點到面的距離
點評:解決的關(guān)鍵是能合理的建立坐標(biāo)系,結(jié)合點的坐標(biāo),得到向量的坐標(biāo),從而得到法向量的坐標(biāo),借助于向量的數(shù)量積來求解,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方體ABCD—A1B1C1D1中,E為AB中點,F(xiàn)為正方形BCC1B1的中心.
(1)求直線EF與平面ABCD所成角的正切值;
(2)求異面直線A1C與EF所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,,、分別是、的中點;
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點,是上的一動點,主視圖與俯視圖都為正方形。
⑴求證:;
⑵當(dāng)時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com