對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列是“數(shù)列”.
(Ⅰ)若,,,數(shù)列、是否為“數(shù)列”?若是,指出它對應的實常數(shù),若不是,請說明理由;
(Ⅱ)證明:若數(shù)列是“數(shù)列”,則數(shù)列也是“數(shù)列”;
(Ⅲ)若數(shù)列滿足,,為常數(shù).求數(shù)列前項的和.
(1)
(2)若數(shù)列是“數(shù)列”, 則存在實常數(shù),使得對于任意都成立,結合定義得到。
(3)
解析試題分析:解:(Ⅰ)因為則有
故數(shù)列是“數(shù)列”, 對應的實常數(shù)分別為.
因為,則有
故數(shù)列是“數(shù)列”, 對應的實常數(shù)分別為. 4分
(Ⅱ)證明:若數(shù)列是“數(shù)列”, 則存在實常數(shù),
使得對于任意都成立,
且有對于任意都成立,
因此對于任意都成立,
故數(shù)列也是“數(shù)列”.
對應的實常數(shù)分別為.- 8分
(Ⅲ)因為 , 則有,,
,。
故數(shù)列前項的和
14分
考點:數(shù)列的概念和性質
點評:主要是考查了新定義的運用,以及數(shù)列的求和的綜合運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,且,;又若是各項為正數(shù)的等比數(shù)列,且滿足,其前項和為,.
(1)分別求數(shù)列,的通項公式,;
(2)設數(shù)列的前項和為,求的表達式,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知等差數(shù)列和公比為的等比數(shù)列滿足:,,.
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)若數(shù)列的前項和為,且對任意均有成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列:,即當時,記.記. 對于,定義集合是的整數(shù)倍,,且.
(1)求集合中元素的個數(shù);
(2)求集合中元素的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定常數(shù),定義函數(shù),數(shù)列滿足.
(1)若,求及;
(2)求證:對任意,;
(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列是首項的等比數(shù)列,其前項和中,、、成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列{}的前項和為;
(3)求滿足的最大正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知=2,點()在函數(shù)的圖像上,其中=.
( 1 ) 證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對數(shù)列,規(guī)定為數(shù)列的一階差分數(shù)列,其中, 對自然數(shù),規(guī)定為的階差分數(shù)列,其中.
(1)已知數(shù)列的通項公式,試判斷,是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列首項,且滿足,求數(shù)列的通項公式。
(3)對(2)中數(shù)列,是否存在等差數(shù)列,使得對一切自然都成立?若存在,求數(shù)列的通項公式;若不存在,則請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}是首項a1=4,公比q≠1的等比數(shù)列,Sn是其前n項和,且成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com