【題目】在極坐標系中,圓的極坐標方程為,若以極點為原點,極軸所在的直線為軸建立平面直角坐標系
(1)求圓的參數(shù)方程;
(2)在直角坐標系中,點是圓上的動點,試求的最大值,并求出此時點的直角坐標;
(3)已知為參數(shù)),曲線為參數(shù)),若版曲線上各點恒坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值.
【答案】(1)為參數(shù));(2)最大值為時,點的直角坐標為;(3).
【解析】試題分析:
(1)圓的普通方程為,所以所求圓的參數(shù)方程為為參數(shù)).
(2) 設(shè),代入
整理可知則關(guān)于的方程必有實數(shù)根,
所以,解得,即的最大值為11,
故的最大值為時,點的直角坐標為.
(3)點的坐標是, ,
當時, 取得最小值, .
試題解析:(1)因為,所以,
即為圓的普通方程,
所以所求圓的參數(shù)方程為為參數(shù)).
(2)設(shè),得代入
整理得,則關(guān)于的方程必有實數(shù)根,
所以,化簡得,
解得,即的最大值為11,
將代入方程,得,解得,代入得,
故的最大值為時,點的直角坐標為.
(3)的參數(shù)方程為為參數(shù)),故點的坐標是,
從而點到直線的距離是,
由此當時, 取得最小值,且最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關(guān)于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設(shè),求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 是中點, 是中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值的大。
(Ⅲ)在棱上是否存在一點,使得的余弦值為?若存在,指出點在上的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,求證:對任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位從一所學(xué)校招收某類特殊人才,對20位已經(jīng)選拔入圍的學(xué)生進行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
例如表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是4人,由于部分數(shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為.
(1)求、的值;
(2)從運動協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取2位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定, ,記為某同學(xué)家里的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損元,一輛非事故車盈利元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;
②若該銷售商一次購進輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面平面,平面,點為的中點,連接.
(1)求證:∥平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若且恒成立,求的最大值;
(Ⅲ)在(Ⅱ)的條件下,且取得最大值時,設(shè),且函數(shù)有兩個零點,求實數(shù)的取值范圍,并證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com