如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段上是否存在一個(gè)定點(diǎn),使得對(duì)任意的m,
⊥AP,并證明你的結(jié)論.
(1)60º. (2)Q為的中點(diǎn)
解析試題分析:(1)利用空間向量研究線面角,關(guān)鍵在于正確表示各點(diǎn)坐標(biāo),正確求出平面一個(gè)法向量,正確理解線面角與向量夾角之間互余的關(guān)系. 建立空間直角坐標(biāo)系,則A(1,0,0), B(1,1,0), P(0,1,m),C(0,1,0), D(0,0,0), B1(1,1,1), D1(0,0,2). 所以又由知為平面的一個(gè)法向量. =,解得(2)同(1)若在上存在這樣的點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為x,則.,即Q為的中點(diǎn).
(1)建立空間直角坐標(biāo)系,則
A(1,0,0), B(1,1,0), P(0,1,m),C(0,1,0), D(0,0,0),
B1(1,1,1), D1(0,0,2).所以
又由的一個(gè)法向量.設(shè)與所成的角為,
則=, 5分
解得.故當(dāng)時(shí),直線AP與平面所成角為60º. 7分
(2)若在上存在這樣的點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為x,
則.
依題意,對(duì)任意的m要使D1Q在平面APD1上的射影垂直于AP. 等價(jià)于
即Q為的中點(diǎn)時(shí),滿足題設(shè)的要求. 14分
考點(diǎn):利用空間向量研究線面關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,,,,平面⊥平面,是線段上一點(diǎn),,.
(1)證明:⊥平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•天津)如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,直線平面,且
,又點(diǎn),,分別是線段,,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).
證明:直線平面;
(2) 若,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,平面,底面是直角梯形,,∥,且,,為的中點(diǎn).
(1)設(shè)與平面所成的角為,二面角的大小為,求證:;
(2)在線段上是否存在一點(diǎn)(與兩點(diǎn)不重合),使得∥平面? 若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如下圖,在四棱柱中,底面和側(cè)面都
是矩形,是的中點(diǎn),,.
(1)求證:
(2)求證:平面;
(3)若平面與平面所成的銳二面角的大小為,求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,直三棱柱ABCA1B1C1中,D、E分別是AB、BB1的中點(diǎn),AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
我們把平面內(nèi)與直線垂直的非零向量稱(chēng)為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(—3,4),且法向量為的直線(點(diǎn)法式)方程為類(lèi)比以上方法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(1,2,3)且法向量為的平面(點(diǎn)法式)方程為 。(請(qǐng)寫(xiě)出化簡(jiǎn)后的結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com