已知雙曲線的左右焦點分別為,為雙曲線的離心率,P是雙曲線右支上的點,的內(nèi)切圓的圓心為I,過作直線PI的垂線,垂足為B,則OB=

A.a(chǎn)                B.b                C.              D.

 

【答案】

A

【解析】

試題分析:根據(jù)題意,利用切線長定理,再利用雙曲線的定義,把,轉(zhuǎn)化為,從而求得點H的橫坐標.再在三角形PCF2中,由題意得,它是一個等腰三角形,從而在三角形中,利用中位線定理得出OB,從而解決問題.

解:由題意知:(-c,0)、(c,0),內(nèi)切圓與x軸的切點是點A,作圖

,及圓的切線長定理知,

,設(shè)內(nèi)切圓的圓心橫坐標為x,

則|(x+c)-(x-c)|=2a,∴x=a,在三角形中,由題意得,它是一個等腰三角形,PC=PF2,

∴在三角形中,有:OB= =-PC)=-)=×2a=a.故選A.

考點:雙曲線的定義、切線長定理

點評:本題考查雙曲線的定義、切線長定理.解答的關(guān)鍵是充分利用三角形內(nèi)心的性質(zhì).屬于基礎(chǔ)題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的左右焦點是F1,F(xiàn)2,設(shè)P是雙曲線右支上一點,
F1F2
F1P
上的投影的大小恰好為|
F1P
|
且它們的夾角為
π
6
,則雙曲線的離心率e為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的左右焦點分別為F1、F2,點P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年天津市高三第四次月考理科數(shù)學試卷(解析版) 題型:填空題

已知雙曲線的左右焦點為,P為雙曲線右支上

的任意一點,若的最小值為8a,則雙曲線的離心率的取值范圍是        

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆湖北省四校高二下學期期中文科數(shù)學試卷(解析版) 題型:選擇題

已知雙曲線的左右焦點分別為為左支上一點,若的最小值為,則雙曲線離心率的取值范圍為(     )

A、                      B、               C、            D、

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省三明市高三第一學期測試理科數(shù)學試卷 題型:填空題

已知雙曲線的左右焦點分別是,點是雙曲線右支上一點,且,則三角形的面積等于     

 

查看答案和解析>>

同步練習冊答案