【題目】已知數(shù)列{an}的前n項和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,b2,b5,ba14成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項公式;

(2)設cn=anbn,求數(shù)列{cn}的前n項和Tn

【答案】(1),;(2)

【解析】分析:(I)Sn=1(nN),n≥2時,Sn﹣1+an﹣1=1,相減可得:anan﹣1=0,化為:an=an﹣1.利用等比數(shù)列的通項公式可得an.數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1==1.由b2,b5,b14成等比數(shù)列.可得=b2b14,(1+4d)2=(1+d)(1+13d),d≠0.解得d.即可得出;Ⅱ)設cn=anbn=利用錯位相減法即可得出.

詳解:

(1)Sn=1(n∈N),n≥2時,Sn﹣1+an﹣1=1,相減可得:anan﹣1=0,化為:an=an﹣1.

n=1時,a1+=1,解得a1=

∴數(shù)列{an}是等比數(shù)列,首項為,公比為.∴an==2×

數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1==1.

∵b2,b5,b14成等比數(shù)列.∴=b2b14,

∴(1+4d)2=(1+d)(1+13d),d≠0.解得d=2.∴bn=1+2(n﹣1)=2n﹣1.

(2)設cn=anbn=

求數(shù)列{cn}的前n項和Tn=+……+

=+……++

相減可得:Tn=+4=+4×,

化為:Tn=2﹣

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是圓上任意一點,過軸的垂線段, 為垂足.當點在圓上運動時,線段中點的軌跡為曲線(包括點和點),為坐標原點.

Ⅰ)求曲線的方程;

Ⅱ)直線與曲線相切,且與圓相交于兩點,當的面積最大時,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)當時,求函數(shù)處的切線方程;

(2)若函數(shù)在定義域上有且只有一個極值點,求實數(shù)的取值范圍;

(3)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生研究學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化,老師講課開始時,學生的興趣激增;接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.設表示學生注意力指標.

該小組發(fā)現(xiàn)隨時間(分鐘)的變化規(guī)律(越大,表明學生的注意力越集中)如下:).

若上課后第分鐘時的注意力指標為,回答下列問題:

)求的值.

)上課后第分鐘和下課前分鐘比較,哪個時間注意力更集中?并請說明理由.

)在一節(jié)課中,學生的注意力指標至少達到的時間能保持多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方體ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端點的點,且

(1) 當BEA1為鈍角時,求實數(shù)λ的取值范圍;

(2) 若λ,記二面角B1-A1B-E的的大小為θ,求|cosθ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的右準線的方程為,焦距為.

1求橢圓的方程;

2過定點作直線與橢圓交于點(異于橢圓的左、右頂點)兩點,設直線與直線相交于點.

,試求點的坐標;

求證:點始終在一條直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, ,

.

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分12分已知極坐標系的極點與直角坐標系的原點重合極軸與直角坐標系的x軸的正半軸重合,且兩個坐標系的單位長度相同已知直線l的參數(shù)方程為t為參數(shù),曲線C的極坐標方程為

若直線l的斜率為-1求直線l與曲線C交點的極坐標;

若直線l與曲線C相交弦長為,求直線l的參數(shù)方程標準形式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的左焦點為,且過點.

(Ⅰ)求橢圓E的方程;

(Ⅱ)設直線與橢圓E交于兩點,與的交點為,且滿足.

,求 的值

設點是橢圓E的左頂點,點關于軸的對稱點為點,試探究:在線段上是否存在一個定點,使得直線過定點,如果存在,求出點的坐標;如果不存在,請說明理由。

查看答案和解析>>

同步練習冊答案