【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),fx=-x2+4x

(1)求函數(shù)fx)的解析式;

(2)在給定的坐標(biāo)系中畫出函數(shù)fx)在R上的圖象(不用列表);

(3)討論直線y=mmR)與y=fx)的圖象的交點(diǎn)個(gè)數(shù).

【答案】1fx)=; 2)見解析;(3)見解析.

【解析】

本題第(1)題利用偶函數(shù)的性質(zhì)公式fx)=f(﹣x)可得當(dāng)x0時(shí)的函數(shù)表達(dá)式,則即可得到函數(shù)fx)的解析式;第(2)題可將第(1)題中函數(shù)fx)的解析式化為頂點(diǎn)式,即可畫出fx)的圖象;第(3)題根據(jù)第(2)題中fx)大致圖象,對(duì)m分類討論即可得到交點(diǎn)個(gè)數(shù).

1)由題意,

當(dāng)x0時(shí),﹣x0f(﹣x)=﹣(﹣x2+4(﹣x)=﹣x24x,

又∵函數(shù)fx)是定義在R上的偶函數(shù),

∴當(dāng)x0時(shí),fx)=f(﹣x)=﹣x24x

∴函數(shù)fx)的解析式為:

fx

2)由(1),知:

當(dāng)x0時(shí),fx)=﹣x24x=﹣(x+22+4;當(dāng)x≥0時(shí),fx)=﹣x2+4x=﹣(x22+4

fx,大致圖象如下:

3)根據(jù)(2)中fx)大致圖象,可知

①當(dāng)m0時(shí),直線ymyfx)的圖象有2個(gè)交點(diǎn);

②當(dāng)m0時(shí),直線ymyfx)的圖象有3個(gè)交點(diǎn);

③當(dāng)0m4時(shí),直線ymyfx)的圖象有4個(gè)交點(diǎn);

④當(dāng)m4時(shí),直線ymyfx)的圖象有2個(gè)交點(diǎn);

⑤當(dāng)m4時(shí),直線ymyfx)的圖象有沒有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線x2=1.

(1)若一橢圓與該雙曲線共焦點(diǎn),且有一交點(diǎn)P(2,3),求橢圓方程.

(2)設(shè)(1)中橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,直線l為橢圓的右準(zhǔn)線,Nl上的一動(dòng)點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.若AMMN,求AMB的余弦值;

(3)設(shè)過A、FN三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時(shí),求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是偶函數(shù).

(1)求不等式的解集;

(2)若不等式對(duì)任意實(shí)數(shù)成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(αβ),函數(shù)

(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);

(2)當(dāng)a為何值時(shí),f(x)在區(qū)間[α,β]上的最大值與最小值之差最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).

1)求函數(shù)的解析式及其定義域;

2)試問當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具公司制作木質(zhì)的椅子和書桌兩種家具,需要木工和漆工兩道工序,已知木工平均6個(gè)小時(shí)做一把椅子,10個(gè)小時(shí)做一張書桌,該公司每月木工最多有6000個(gè)工作時(shí);漆工平均4個(gè)小時(shí)漆一把椅子,2個(gè)小時(shí)漆一張書桌,該公司每月漆工最多有2600個(gè)工作時(shí)又已知制作一把椅子和一張書桌的利潤分別是15元和20元,根據(jù)以上條件,怎樣安排每月的生產(chǎn),才能獲得最大的利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在極值點(diǎn),求a的取值范圍;

(2)設(shè)a(1,e],當(dāng)x1(0,1),x2(1,+∞)時(shí),記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點(diǎn),焦點(diǎn),圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P

①若直線l與橢圓C有且只有一個(gè)公共點(diǎn),求點(diǎn)P的坐標(biāo);

②直線l與橢圓C交于兩點(diǎn).若的面積為,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案