【題目】數(shù)列滿足.
(1)求;
(2)求的表達式.
【答案】(1);(2).
【解析】
試題分析:(1)由遞推公式:;(2)先猜想數(shù)列的通項公式是,然后利用數(shù)學歸納法證明猜想正確.
試題解析:
(1)由遞推公式:,...................4分
(2)方法一:猜想:,.................6分
下面用數(shù)學歸納法證明:①,猜想成立;
②假設時,,則,即時猜想成立,
綜合①②,由數(shù)學歸納法原理知:...................12分
方法二:由得:,
所以:.................12分
方法三:由得:,兩式作差得:,
于是是首項,公差為2的等差數(shù)列,那么,
且是首項,公差為2的等差數(shù)列,那么,
綜上可知:.............12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)若曲線在處的切線方程為.求實數(shù)的值;
(2)①若時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;
②若,若對一切正實數(shù)恒成立,求實數(shù)的取值范圍(用表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是公差為的等差數(shù)列,是公比為的等比數(shù)列. 記.
(1)求證: 數(shù)列為等比數(shù)列;
(2)已知數(shù)列的前項分別為.
①求數(shù)列和的通項公式;
②是否存在元素均為正整數(shù)的集合,使得數(shù)列等差數(shù)列?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(1)求證:曲線在點處的切線過定點;
(2)若是在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;
(3)求證:對任意給定的正數(shù),總存在,使得在上為單調函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(1)求證:曲線在點處的切線過定點;
(2)若是在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;
(3)求證:對任意給定的正數(shù),總存在,使得在上為單調函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
為定義在上的“局部奇函數(shù)”;
曲線與軸交于不同的兩點;
若為假命題, 為真命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,橢圓上一點與橢圓右焦點的連線垂直于軸.
(1)求橢圓的方程;
(2)與拋物線相切于第一象限的直線,與橢圓交于,兩點,與軸交于點,線段的垂直平分線與軸交于點,求直線斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程:(為參數(shù)),曲線上的點對應的參數(shù).以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,點的極坐標是,直線過點,且與曲線交于不同的兩點,.
(1)求曲線的普通方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一位同學家里訂了一份報紙,送報人每天都在早上6 : 207 : 40之間將報紙送達,該同學需要早上7 : 008 : 00之間出發(fā)上學,則這位同學在離開家之前能拿到報紙的概率為 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com