【題目】下列函數(shù)中,是偶函數(shù)且不存在零點(diǎn)的是(
A.y=x2
B.y=
C.y=log2x
D.y=( |x|

【答案】D
【解析】解:對(duì)于A,y=x2的對(duì)稱軸為y軸,故y=x2是偶函數(shù),令x2=0得x=0,所以y=x2的零點(diǎn)為x=0.不符合題意.
對(duì)于B,y= 的定義域?yàn)閇0,+∞),不關(guān)于原點(diǎn)對(duì)稱,故y= 不是偶函數(shù),不符合題意.
對(duì)于C,y=log2x的定義域?yàn)椋?,+∞),不關(guān)于原點(diǎn)對(duì)稱,故y=log2x不是偶函數(shù),不符合題意.
對(duì)于D,﹣( |x|=﹣( |x| , 故y=﹣( |x|是偶函數(shù),令﹣( |x|=0,方程無解.即y=﹣( |x|無零點(diǎn).
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的零點(diǎn)(函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時(shí)間,分別從該品牌手機(jī)的甲、乙兩種型號(hào)中各選取部進(jìn)行測(cè)試,其結(jié)果如下:

甲種手機(jī)供電時(shí)間(小時(shí))

乙種手機(jī)供電時(shí)間(小時(shí))

(1)求甲、乙兩種手機(jī)供電時(shí)間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部,記所抽部手機(jī)供電時(shí)間不小于小時(shí)的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M、N分別是面對(duì)角線A1B與B1D1的中點(diǎn),設(shè) = , = , =

(1)以{ , , }為基底,表示向量 ;
(2)求證:MN∥平面BCC1B1
(3)求直線MN與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“真人秀”熱潮在我國愈演愈烈,為了了解學(xué)生是否喜歡某“真人秀”節(jié)目,在某中學(xué)隨機(jī)調(diào)查了110名學(xué)生,得到如下列聯(lián)表:

總計(jì)

喜歡

40

20

60

不喜歡

20

30

50

總計(jì)

60

50

110

算得.

附表:

0.050

0.010

0.001

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“喜歡該節(jié)目與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“喜歡該節(jié)目與性別無關(guān)”

C. 以上的把握認(rèn)為“喜歡該節(jié)目與性別有關(guān)”

D. 以上的把握認(rèn)為“喜歡該節(jié)目與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得﹣200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為 ,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列和數(shù)學(xué)期望E(X).
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在各棱長(zhǎng)均為2的三棱柱中,側(cè)面底面, .

(1) 求側(cè)棱與平面所成角的正弦值的大。

(2) 求異面直線間的距離;

(3) 已知點(diǎn)滿足,在直線上是否存在點(diǎn),使平面?若存在,請(qǐng)確定點(diǎn)的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱C1D1、C1C的中點(diǎn).以下四個(gè)結(jié)論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結(jié)論的序號(hào)為
(注:把你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第二十九屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于2008年8月8日在北京舉行,若集合A={參加北京奧運(yùn)會(huì)比賽的運(yùn)動(dòng)員},集合B={參加北京奧運(yùn)會(huì)比賽的男運(yùn)動(dòng)員}.集合C={參加北京奧運(yùn)會(huì)比賽的女運(yùn)動(dòng)員},則下列關(guān)系正確的是(  )
A.AB
B.BC
C.A∩B=C
D.B∪C=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中, 是自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求曲線處的切線方程;

2求函數(shù)的單調(diào)減區(qū)間;

3)若恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案