【題目】已知數(shù)列{an}滿足:an(n∈N*).若正整數(shù)k(k≥5)使得a12+a22+…+ak2=a1a2…ak成立,則k=( )
A.16B.17C.18D.19
【答案】B
【解析】
由題意可得a1=a2=a3=a4=a5=2,a6=a1a2a3…a5﹣1=25﹣1=31,n≥6時,a1a2…an﹣1=1+an,將n換為n+1,兩式相除整理得an2=an+1﹣an+1,n≥6,求得a62+a72+…+ak2=ak+1﹣a6+k﹣5,結(jié)合已知條件,即可得到所求值.
解:an(n∈N*),
即a1=a2=a3=a4=a5=2,a6=a1a2a3…a5﹣1=25﹣1=31,
n≥6時,a1a2…an﹣1=1+an,所以a1a2…an=1+an+1,
兩式相除可得an,
則an2=an+1﹣an+1,n≥6,
由a62=a7﹣a6+1,
a72=a8﹣a7+1,
…,
ak2=ak+1﹣ak+1,k≥5,
可得a62+a72+…+ak2=ak+1﹣a6+k﹣5
a12+a22+…+ak2=20+ak+1﹣a6+k﹣5=ak+1+k﹣16,
且a1a2…ak=1+ak+1,
正整數(shù)k(k≥5)使得a12+a22+…+ak2=a1a2…ak成立,
則ak+1+k﹣16=ak+1+1,
則k=17,
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,,,,,六名同學(xué)參加一項比賽,決出第一到第六的名次.,,三人去詢問比賽結(jié)果,裁判對說:“你和都不是第一名”;對說:“你不是最差的”;對說:“你比,的成績都好”,據(jù)此回答六人的名次有_____________種不同情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《復(fù)仇者聯(lián)盟4:終局之戰(zhàn)》是安東尼·羅素和喬·羅素執(zhí)導(dǎo)的美國科幻電影,改編自美國漫威漫畫,自2019年4月24日上映以來票房火爆.某電影院為了解在該影院觀看《復(fù)仇者聯(lián)盟4》的觀眾的年齡構(gòu)成情況,隨機抽取了100名觀眾的年齡,并分成,,,,,,七組,得到如圖所示的頻率分布直方圖.
(1)求這100名觀眾年齡的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)、中位數(shù);
(2)該電影院擬采用抽獎活動來增加趣味性,觀眾可以選擇是否參與抽獎活動(不參與抽獎活動按原價購票),活動方案如下:每張電影票價格提高10元,同時購買這樣電影票的每位觀眾可獲得3次抽獎機會,中獎1次則獎勵現(xiàn)金元,中獎2次則獎勵現(xiàn)金元,中獎三次則獎勵現(xiàn)金元,其中且,已知觀眾每次中獎的概率均為.
①以某觀眾三次抽獎所獲得的獎金總額的數(shù)學(xué)期望為評判依據(jù),若要使抽獎方案對電影院有利,則最高可定為多少;
②據(jù)某時段內(nèi)的統(tǒng)計,當(dāng)時該電影院有600名觀眾選擇參加抽獎活動,并且每增加1元,則參加抽獎活動的觀眾增加100人.設(shè)該時間段內(nèi)觀影的總?cè)藬?shù)不變,抽獎活動給電影院帶來的利潤的期望為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),設(shè)直線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并指出其曲線是什么曲線;
(2)設(shè)直線與軸的交點為為曲線上一動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標(biāo)原點)?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,函數(shù)在區(qū)間上有意義且不單調(diào),求a的取值范圍;
(Ⅱ)若,且,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種密碼鎖的密碼設(shè)置是在正邊形的每個頂點處賦值0和1兩個數(shù)中的一個,同時,在每個頂點處染紅、藍(lán)兩種顏色之一,使得任意相鄰的兩個頂點的數(shù)字或顏色中至少有一個相同.問:該種密碼鎖共有多少種不同的密碼設(shè)置?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時,每噸為1.80元,當(dāng)用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題是否正確,請說明理由:
(1)若向量 與 同向,且,則;
(2)若向,則 與的長度相等且方向相同或相反;
(3)對于任意向量,若 與的方向相同,則 =;
(4)由于 方向不確定,故 不與任意向量平行;
(5)向量 與平行,則向量 與方向相同或相反.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com