【題目】一種密碼鎖的密碼設(shè)置是在正邊形的每個(gè)頂點(diǎn)處賦值0和1兩個(gè)數(shù)中的一個(gè),同時(shí),在每個(gè)頂點(diǎn)處染紅、藍(lán)兩種顏色之一,使得任意相鄰的兩個(gè)頂點(diǎn)的數(shù)字或顏色中至少有一個(gè)相同.問(wèn):該種密碼鎖共有多少種不同的密碼設(shè)置?
【答案】當(dāng)為奇數(shù)時(shí),有種;當(dāng)為偶數(shù)時(shí),有種.
【解析】
對(duì)于該種密碼鎖的一種密碼設(shè)置,若相鄰兩個(gè)頂點(diǎn)上所賦值的數(shù)字不同,則在它們所在的邊上標(biāo)上;若顏色不同,則標(biāo)上;若數(shù)字和顏色都相同,則標(biāo)上.于是,對(duì)于給定的點(diǎn)上的設(shè)置(共有4種),按照邊上的字母可以依次確定點(diǎn)上的設(shè)置.為了使得最終回到時(shí)的設(shè)置與初始時(shí)相同,標(biāo)有和的邊都是偶數(shù)條.
所以,這種密碼鎖的所有不同的密碼設(shè)置方法數(shù)等于在邊上標(biāo)記、、使得標(biāo)有和的邊都是偶數(shù)條的方法數(shù)的4倍.
設(shè)標(biāo)有的邊有()條,標(biāo)有的邊有()條.
選取條邊標(biāo)記的有種方法,在余下的邊中取出條邊標(biāo)記的有第種方法,其余的邊標(biāo)記.
由乘法原理知共有種標(biāo)記方法.
對(duì)、求和,密碼鎖的所有不同的密碼設(shè)置方法數(shù)為
. ①
這里,約定.
當(dāng)為奇數(shù)時(shí),,此時(shí),
. ②
代入式①中得
.
當(dāng)為偶數(shù)時(shí),若,則式②仍然成立;若,則正邊形的所有邊都標(biāo)記,此時(shí),只有一種標(biāo)記方法.于是,所有不同的密碼設(shè)置的方法數(shù)為
.
綜上,這種密碼鎖的所有不同的密碼設(shè)置方法數(shù)是:當(dāng)為奇數(shù)時(shí),有種;當(dāng)為偶數(shù)時(shí),有種.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是一個(gè)“數(shù)陣”:
1 | ( ) | ( ) | ( ) | … | … | |
( ) | 1 | ( ) | ( ) | … | … | |
( ) | ( ) | ( ) | 1 | … | … | |
… | … | … | … | … | … | … |
… | … | |||||
… | … | … | … | … | … | … |
其中每行都是公差不為0等差數(shù)列,每列都是等比數(shù)列,表示位于第i行第j列的數(shù).
(1)寫出的值:
(2)寫出的計(jì)算公式,以及第2020個(gè)1所在“數(shù)陣”中所在的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (mR)
(1)當(dāng)時(shí),
①求函數(shù)在x=1處的切線方程;
②求函數(shù)在上的最大,最小值.
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足:an(n∈N*).若正整數(shù)k(k≥5)使得a12+a22+…+ak2=a1a2…ak成立,則k=( )
A.16B.17C.18D.19
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(3)在同一平面直角坐標(biāo)系中,再畫出函數(shù)g(x)= (x>0)的圖象(不用列表),觀察圖象直接寫出當(dāng)x>0時(shí),不等式f(x)> 的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的離心率為2,過(guò)點(diǎn)、斜率為1的直線與雙曲線交于、兩點(diǎn)且,.
(1)求雙曲線方程。
(2)設(shè)為雙曲線右支上動(dòng)點(diǎn),為雙曲線的右焦點(diǎn),在軸負(fù)半軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且cosA=,cosB=.
(1)求sinC的值;
(2)若a-b=4-2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,若,則稱數(shù)列為“廣義遞增數(shù)列”,若,則稱數(shù)列為“廣義遞減數(shù)列”,否則稱數(shù)列為“擺動(dòng)數(shù)列”.已知數(shù)列共4項(xiàng),且,則數(shù)列是擺動(dòng)數(shù)列的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com