如圖,在矩形ABCD中,,為上一點(diǎn),以直線EC為折線將點(diǎn)B折起至點(diǎn)P,并保持∠PEB為銳角,連結(jié)PA、PC、PD,取PD的中點(diǎn)F,若有AF∥平面PEC。
(Ⅰ)試確定點(diǎn)E的位置;
(Ⅱ)若異面直線PE、CD所成的角為60°,求證:平面PEC⊥平面AECD。
(Ⅰ)點(diǎn)為的中點(diǎn)
(Ⅱ)見解析
【解析】(Ⅰ)點(diǎn)為的中點(diǎn) …………………………………………2分
證明如下:
取的中點(diǎn),連。
由條件知,。
則四點(diǎn)共面。
平面, 平面平面,。
則四邊形為平行四邊形。
.則為的中點(diǎn)。
(Ⅱ)所成的角為,∠PEB為銳角,∴∠PEB=60°。
,∴△PEB為等邊三角形。
∴。
作PH⊥平面,垂足為H,則HB = HE = HC。
∴H為△CBE的外心。
∵△CBE是直角三角形且∠B為直角, ∴外心H為斜邊CE的中點(diǎn)。
∴H在CE上平面,∴平面平面。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com