【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;

(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,交于點,交于點,且,求的值.

【答案】(1)曲線,曲線(2)

【解析】

1)將曲線消去參數(shù)的普通方程,利用極坐標與直角坐標的互化公式可得的直角坐標方程.(2)將直線l參數(shù)方程代入曲線的普通方程,得到參數(shù),把直線l的參數(shù)方程代入曲線的普通方程得到參數(shù),利用計算即可答案.

解:(1)曲線消去參數(shù),曲線的極坐標方程為 化為直角坐標方程為,即.

(2)把直線的參數(shù)方程代入曲線的普通方程 .同理,把直線的參數(shù)方程代入曲線的普通方程得,.,

.綜上所述:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,若對于任意實數(shù)對,存在,使成立,則稱集合垂直對點集;下列四個集合中,是垂直對點集的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中, ,平面經(jīng)過,直線則平面截該正方體所得截面的面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】箱子里有16張撲克牌:紅桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴了學生甲,把這張牌的花色告訴了學生乙,這時,老師問學生甲和學生乙:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學生甲:我不知道這張牌;學生乙:我知道你不知道這張牌;學生甲:現(xiàn)在我知道這張牌了;學生乙:我也知道了.則這張牌是( )

A. 草花5B. 紅桃

C. 紅桃4D. 方塊5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線與拋物線交于,兩點,與橢圓交于,兩點,直線,,為坐標原點)的斜率分別為,,,,若.

(1)是否存在實數(shù),滿足,并說明理由;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從種植有甲、乙兩種麥苗的兩塊試驗田中各抽取6株麥苗測量株高,得到的數(shù)據(jù)如下(單位:):

甲:910,1112,10,20

乙:814,13,10,12,21

1)用莖葉圖表示這些數(shù)據(jù):

2)分別計算兩組數(shù)據(jù)的中位數(shù)、平均數(shù)與方差,并由此估計甲、乙兩種麥苗株高的平均數(shù)及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于,兩點.

(1)求圓心的極坐標;

(2)直線軸的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,則當時,討論的單調(diào)性;

(2)若,且當時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案