【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán).集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井.取得了地質(zhì)資料,進(jìn)入全面勘探時期后.集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高.如果新設(shè)計的井位與原有井位重合或接近.便利用舊并的地質(zhì)資料.不必打這日新并,以節(jié)約勘探費(fèi)與用,勘探初期數(shù)據(jù)資料見如表:
井號 | ||||||
坐標(biāo) | ||||||
鉆探深度 | ||||||
出油量 |
(參考公式和計算結(jié)果:,,,).
()號舊井位置線性分布,借助前組數(shù)據(jù)求得回歸直線方程為,求的值.
()現(xiàn)準(zhǔn)備勘探新井,若通過,,,號井計算出的,的值(,精確到)相比于()中的,,值之差不超過.則使用位置最接近的已有舊井.否則在新位置打開,請判斷可否使用舊井?
()設(shè)出油量與勘探深度的比值不低于的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
【答案】(1);(2)使用位置最接近的已有舊井;(3)見解析.
【解析】試題分析:(1)計算、,求出回歸系數(shù),寫出回歸直線方程;
(2)計算、,求出回歸系數(shù),計算,的值(,精確到)相比于()中的,,值之差,即可得出結(jié)論;
(3)用列舉法求基本事件數(shù),計算對應(yīng)的概率值.
試題解析;
①利用前組數(shù)據(jù)得到
,
.
∵,
∴,∴回歸直線方程為.
當(dāng)時,,∴的預(yù)報值為.
② ∵,,,.
∴,
∴,即,,,.
,,均不超過.
∴使用位置最接近的已有舊井.
③由題意,,,,這口井是優(yōu)質(zhì)井,,這兩口井是非優(yōu)質(zhì)井,
∴勘察優(yōu)質(zhì)井?dāng)?shù)的可能取值為,,.
,可得
,,.∴的分布列為:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018四川南充市高三第二次(3月)高考適應(yīng)性考試】已知橢圓的離心率為,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(II)直線平行于為坐標(biāo)原點(diǎn)),且與橢圓交于兩個不同的點(diǎn),若為鈍角,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線與曲線、分別交于點(diǎn)(且均異于原點(diǎn))當(dāng)時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.
(1)求曲線和直線的普通方程;
(2)設(shè)為曲線上任意一點(diǎn),求點(diǎn)到直線的距離的最值.
【答案】(1), ;(2)最大值為,最小值為
【解析】試題分析:(1)根據(jù)參數(shù)方程和極坐標(biāo)化普通方程化法即易得結(jié)論的普通方程為;直線的普通方程為.(2)求點(diǎn)到線距離問題可借助參數(shù)方程,利用三角函數(shù)最值法求解即可故設(shè), .即可得出最值
解析:(1)根據(jù)題意,由,得, ,
由,得,
故的普通方程為;
由及, 得,
故直線的普通方程為.
(2)由于為曲線上任意一點(diǎn),設(shè),
由點(diǎn)到直線的距離公式得,點(diǎn)到直線的距離為
.
∵ ,
∴ ,即 ,
故點(diǎn)到直線的距離的最大值為,最小值為.
點(diǎn)睛:首先要熟悉參數(shù)方程和極坐標(biāo)方程化普通方程的方法,第一問基本屬于送分題所以務(wù)必抓住,對于第二問可以總結(jié)為一類題型,借助參數(shù)方程設(shè)點(diǎn)的方便轉(zhuǎn)化為三角函數(shù)最值問題求解
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù),.
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國政府實(shí)施“互聯(lián)網(wǎng)+”戰(zhàn)略以來,手機(jī)作為客戶端越來越為人們所青睞,通過手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式,“一機(jī)在手,走遍天下”的時代已經(jīng)到來。在某著名的夜市,隨機(jī)調(diào)查了100名顧客購物時使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認(rèn)為“市場購物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個容量為5的樣本,設(shè)事件為“從這個樣本中任選2人,這2人中至少有1人是不使用手機(jī)支付的”,求事件發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計 | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 24 | ||
合計 | 100 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,動點(diǎn)不在軸上,直線、的斜率之積.
(Ⅰ)求動點(diǎn)的軌跡方程;
(Ⅱ)經(jīng)過點(diǎn)的兩直線與動點(diǎn)的軌跡分別相交于、兩點(diǎn)。是否存在常數(shù),使得任意滿足的直線恒過線段的中點(diǎn)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點(diǎn),關(guān)于軸的對稱點(diǎn)為,曲線上任意一點(diǎn)滿足;直線和直線的斜率之積為.
(1)求曲線的方程;
(2)過且斜率為正數(shù)的直線與拋物線交于兩點(diǎn),其中點(diǎn)在軸上方,與曲線交于點(diǎn),若的面積為的面積為,當(dāng)時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com