【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表:

作物產(chǎn)量(kg)

300

500

概率

0.5

0.5

作物市場價格(元/kg)

6

10

概率

0.4

0.6

(1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;

(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.

【答案】1的分布列為

X

4000

2000

800

P

03

05

02

2

【解析】

試題分析:(1)根據(jù)條件中的表格可知,作物產(chǎn)量與市場價的可能的組合總共有四種情況:產(chǎn)量,市場價;產(chǎn)量,市場價;產(chǎn)量,市場價;產(chǎn)量,市場價;因此作物的利潤的計算也應(yīng)分四種情況進行計算:,,,若設(shè)表示事件作物產(chǎn)量為,表示事件作物市場價格為,則取到各個值的概率為:,

,即可知的分布列;(2)由(1)可知,事件等價于事件,因此,而所求事件的概率等價于季的利潤都不少于元或季當(dāng)中有季利潤不少于元,根據(jù)二項分布的相關(guān)內(nèi)容,可知所求概率為

試題解析:(1)設(shè)表示事件作物產(chǎn)量為表示事件作物市場價格為/kg”,

由題設(shè)知,,(注:基本事件敘述各1分)2

利潤=產(chǎn)量×市場價格-成本,

所有可能的取值為:

,

,4

,

,

的分布列為

X

4000

2000

800

P

03

05

02

2)設(shè)表示事件季利潤不少于, 8

由題意知,,相互獨立,由(1)知,

,

季中至少有季的利潤不少于元的概率為

12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)部門隨機抽測生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

3035]

5

0.20

3540]

8

0.32

40,45]

n1

f1

45,50]

n2

f2

1)確定樣本頻率分布表中n1n2、f1f2的值;

2)現(xiàn)從日加工零件數(shù)落在(40,45]的工人中隨機選取兩個人,求這兩個人中至少有一個來自B車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0,1,2,3,4這五個數(shù)字組成無重復(fù)數(shù)字的自然數(shù).

(Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個數(shù);

(Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個位上的數(shù)字都小,則稱這個數(shù)為“凹數(shù)”,如301,423等都是“凹數(shù)”,試求“凹數(shù)”的個數(shù);

(Ⅲ)在組成的五位數(shù)中,求恰有一個偶數(shù)數(shù)字夾在兩個奇數(shù)數(shù)字之間的自然數(shù)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,其中, 為左、右焦點,且離心率,直線與橢圓交于兩不同點 .當(dāng)直線過橢圓右焦點且傾斜角為時,原點到直線的距離為.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]

(Ⅰ)求橢圓的方程;

(Ⅱ)若,當(dāng)面積為時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xa|-x(a>0).

(1)若a=3,解關(guān)于x的不等式f(x)<0;

(2)若對于任意的實數(shù)x,不等式f(x)-f(xa)<a2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了探究某市高中理科生在高考志愿中報考“經(jīng)濟類”專業(yè)是否與性別有關(guān),現(xiàn)從該市高三理科生中隨機抽取50名學(xué)生進行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)

(1)據(jù)此樣本判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為理科生報考“經(jīng)濟類”專業(yè)與性別有關(guān)?

(2)若以樣本中各事件的頻率作為概率估計全市總體考生的報考情況,現(xiàn)從該市的全體考生(人數(shù)眾多)中隨機抽取3,設(shè)3人中報考“經(jīng)濟類”專業(yè)的人數(shù)為隨機變量X求隨機變量X的概率分布列及數(shù)學(xué)期望

附:

,其中nabcd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點,傾斜角為,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)若,設(shè)直線與曲線交于兩點,求

(3)在(2)條件下,求的面積.

查看答案和解析>>

同步練習(xí)冊答案