函數(shù)y=f(x),y=g(x)的圖象如下,f(1)=g(2)=0,不等式數(shù)學(xué)公式的解集是


  1. A.
    {x|x<1或x>2}∪{x|1<x<2}
  2. B.
    {x|1≤x<2}
  3. C.
    {x|x≤1或x>2}∪{x|1<x<2}
  4. D.
    {x|1≤x≤2}
B
分析:先將分式不等式通過(guò)符號(hào)規(guī)則等價(jià)轉(zhuǎn)化為不等式組,結(jié)合函數(shù)的圖象求出不等式的解集.
解答:同解于

由圖象得

即1≤x<2
故選B
點(diǎn)評(píng):求分式不等式、絕對(duì)值不等式應(yīng)該先等價(jià)轉(zhuǎn)化為不含絕對(duì)值的整式不等式再進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果奇函數(shù)y=f(x)(x≠0),當(dāng)x∈(0,+∞)時(shí),f(x)=x-1,那么使得f(x-1)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃埔區(qū)一模 題型:解答題

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省株洲二中高三(下)第十一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

同步練習(xí)冊(cè)答案