【題目】已知函數(shù)
(1) 判斷函數(shù)的單調性并給出證明;
(2)若存在實數(shù)使函數(shù)是奇函數(shù),求;
(3)對于(2)中的,若,當時恒成立,求的最大值.
【答案】(1)單調遞增(2)見解析
【解析】試題分析:(1)根據單調性定義:先設再作差,變形化為因子形式,根據指數(shù)函數(shù)單調性確定因子符號,最后根據差的符號確定單調性(2)根據定義域為R且奇函數(shù)定義得f(0)=0,解得a=1,再根據奇函數(shù)定義進行驗證(3)先根據參變分離將不等式恒成立化為對應函數(shù)最值問題: 的最小值,再利用對勾函數(shù)性質得最小值,即得的范圍以及的最大值.
試題解析:解:(1)不論a為何實數(shù),f(x)在定義域上單調遞增.
證明:設x1,x2∈R,且x1<x2,
則 由可知,所以,
所以
所以由定義可知,不論為何值, 在定義域上單調遞增
(2)由f(0)=a-1=0得a=1,
經驗證,當a=1時, f(x)是奇函數(shù).
(3)由條件可得: m2x=(2x+1)+-3恒成立.m (2x+1)+-3的最小值,x∈[2,3].
設t=2x+1,則t∈[5,9],函數(shù)g(t)=t+-3在[5,9]上單調遞增,
所以g(t)的最小值是g(5)=,
所以m,即m的最大值是.
科目:高中數(shù)學 來源: 題型:
【題目】( 本小題滿分14)
如圖,在三棱錐P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分別是AB,PB的中點.
(1)求證:DE∥平面PAC
(2)求證:AB⊥PB
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是上、下底邊長分別為2和6,高為的等腰梯形,將它沿對稱軸折疊,使二面角為直二面角.
(1)證明: ;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命題q:雙曲線 ﹣y2=1的離心率為2,則下列命題中為真命題的是( )
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長為2的正方形, 分別為線段, 的中點.
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系內,已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標分別為,則實數(shù)的取值集合為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域分別是A,B的函數(shù), ,規(guī)定:
現(xiàn)給定函數(shù)
(1) 若,寫出函數(shù)的解析式;
(2) 當時,求問題(1)中函數(shù)的值域;
(3) 請設計一個函數(shù),使得函數(shù)為偶函數(shù)且不是常數(shù)函數(shù),并予以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC內角A,B,C所對的邊分別為a,b,c,且 .
(1)若 ,求△ABC的面積;
(2)若 , ,且c>b,BC邊的中點為D,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com