【題目】函數(shù)f(x)=(m2m-1)·是冪函數(shù),對任意x1x2∈(0,+∞)且x1x2,滿足,若ab∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

【答案】A

【解析】函數(shù)f(x)(m2m1) 是冪函數(shù),所以m2m11,解得m2m=-1.

m=2時,f(x)=x2 015;

m=-1時,f(x)=x-4.

又因為對任意x1,x2(0,+∞)x1x2,滿足,所以函數(shù)f(x)是增函數(shù),

所以函數(shù)的解析式為f(x)=x2 015,

函數(shù)f(x)=x2 015是奇函數(shù)且是增函數(shù),

a,b∈Rab>0,ab<0,則a,b異號且正數(shù)的絕對值較大,所以f(a)+f(b)恒大于0,故選A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856289)[選修4-4:坐標系與參數(shù)方程]

直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2(sinθ+cosθ),直線l的參數(shù)方程為: (t為參數(shù)) .

(Ⅰ)寫出圓C和直線l的普通方程;

(Ⅱ)點P為圓C上動點,求點P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856299)已知雙曲線 (a>0,b>0)的左、右焦點分別是F1,F2,點P是其上一點,雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實軸長為(  )

A. 2 B. C. 2或 D. 1或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856332)

已知三棱柱ABCA1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,EBB1的中點,FCB1的中點.

(Ⅰ)證明:平面AEF⊥平面CAA1C1;

(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2018屆吉林省普通中學高三第二次調(diào)研】設(shè)橢圓的左焦點為,右頂點為,離心率為,短軸長為,已知是拋物線的焦點.

(1)求橢圓的方程和拋物線的方程;

(2)若拋物線的準線上兩點關(guān)于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)pf(x)在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2ax20的兩個實根,則不等式m25m3≥|x1x2|對任意實數(shù)a[1,1]恒成立.若p不正確,q正確,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某讀者協(xié)會為了了解該地區(qū)居民睡前看書的時間情況,從該地區(qū)睡前看書的居民中隨機選取了n人進行調(diào)查,現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計得到如圖所示的頻率分布直方圖.則下列說法正確的是(  )

A. 睡前看書時間介于40~50分鐘的頻率為0.03

B. 睡前看書時間低于30分鐘的頻率為0.67

C. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于30~50分鐘的有67人

D. 若n=1000,則可估計本次調(diào)查中睡前看書時間介于20~40分鐘的有600人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

1)若,求曲線在點處的切線方程;

2)若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,直線x軸的交點為P,與拋物線的交點為Q,且.

(1)求拋物線的方程;

(2)過F的直線l與拋物線相交于A,D兩點,與圓相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作拋物線的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.

查看答案和解析>>

同步練習冊答案